
 

AMPLIFIERS 

A circuit containing only capacitors, amplifiers (transistors) and resistors 
may resonate. 

A circuit containing only capacitors and resistors may not. 

Why does amplification permit resonance in a circuit with only one kind of 
storage element? 

 

Amplification arises from static behavior, not dynamics and energy storage. 

Amplification is fundamentally dissipative. 

Poutput ≤ Psupply 

Poutput = Psupply + Pinput - Pdissipated 
Amplifiers are basically multiport resistors 

How does the addition of a (multiport) dissipator enable resonance? 
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WE WILL SEE THAT 

• Amplification is fundamentally a non-equilibrium phenomenon. 

• Resistors far from equilibrium may contain a "hidden" junction structure 
that includes a gyrator. 

• This gyrator can cause resonance with only one kind of storage element. 
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NODICITY 

Electrical amplifiers are nodic. 
Assuming conductance causality 

 
the equations of the three-port resistor may be written as follows. 

f1 = Γ1(e1,e2,e3) 

f2 = Γ2(e1,e2,e3) 

f3 = Γ3(e1,e2,e3) 
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Nodicity means that the efforts and flows at the ports are constrained so that they 
satisfy two conditions: 

(1) Continuity of flow: The sum of flows into the system is zero.  This 
means that the element behaves as a node characterized by a Kirchhoff 
current law.   

(Note the implicit assumption of the "power positive in" sign convention) 
(2) Relativity of effort: Each flow depends only on the difference of 
applied efforts.  The same effort may be added to all inputs without 
changing the output. 
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The constitutive equations of a nodic three-port resistor may be written as 
follows. 

f1 = Γ1[(e1 – e3),(e2 – e3)] 

f2 = Γ2[(e1 – e3),(e2 – e3)] 

f3 = –(f1 + f2) 
Nodicity implies that the behavior of the element is independent of any 
absolute reference frame. 

A nodic three-port (n-port) contains an “embedded” two-port (n-1-port) 

 
characterized by two constitutive equations (not three). 
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EXAMPLE: SEMI-CONDUCTOR DIODE. 
A semi-conductor diode has two ports (two wires) but, in common with all 
electronic devices it is well described as a nodic element and is characterized 
quite accurately by a single constitutive equation such as 

i = Is[e(e1–e2)/Vt  – 1] 
where  

Vt: thermal voltage = kT/q = 25.3 mV at 20°C   
k: Boltzmann's constant 
T: absolute temperature 
q: charge on the electron 
Is: reverse saturation current  

Note that the element satisfies the conditions for nodicity even though both the 
thermal voltage and the reverse saturation current depend on absolute 
temperature.  
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EMBEDDED JUNCTION STRUCTURES 

In general a multi-port resistor may contain a "hidden" junction structure 
coupling the power flows on its ports. 

A two-port resistor may contain a "hidden" or "embedded" gyrator.   
Without loss of generality assume e3 = 0.   
The constitutive equations of the two-port 

f1 = Γ1(e1,e2) 

f2 = Γ2(e1,e2) 

f = Γ(e) 
are restricted to the first and third quadrants.   
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The general form may be replaced by  

f = G(e) e 
where G is a 2x2 conductance matrix.   
The matrix G may be decomposed into symmetric and anti-symmetric 
components.   

G = (G + Gt)/2 + (G – Gt)/2 = Gs + Ga 

The anti-symmetric component describes an ideal power-continuous gyrator 
which is "embedded" in the resistive two-port.   
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Power must be dissipated and not generated.   
The total power dissipated by the element is: 

Pdissipated = etf = etGe = etGse + etGae 
but 

etGae = 0 

Pdissipated = etGse 
Power dissipation depends only on the symmetric component of G.  
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EXAMPLE: NPN TRANSISTOR 
Consider a typical NPN transistor, Motorola's 2N4400.  From the specification 
sheets, the AC small-signal characteristics at 1 KHz are as follows (operating 
conditions: ic = 1mA, vce = 10 Vdc) 

Forward current gain: hfe = 250 
Voltage feedback ratio: hre = 8x10-4 
Input impedance: hie = 7.5 KΩ 
Output conductance: hoe = 30 µmho 

The subscript e on the "h-parameters" refers to the common-emitter 
configuration used in a typical amplifier circuit.   
They are based on a "controlled-source" model of the transistor. 
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The corresponding model equations are 

ic = hfe ib  + hoe ec 

eb = hie ib + hre ec 
Rearranging into matrix form, 
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Note that the gain terms, hfe and hre, appear in the off-diagonal positions.   
This matrix may be partially inverted and rearranged into a conductance form as 
follows. 

ic = (hoe - hfehre/hie) ec + (hfe/hie) eb 

ib = -(hre/hie) ec + (1/hie) eb 
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Equating terms: 

Ycc = hoe – hfehre/hie 

Ycb = hfe/hie 

Ybc = –hre/hie 

Ybb = 1/hie 

This is a two-port nodic resistor.   

NOTE: 

The controlled-source representation is widely used 
this conductance representation is not. 

The conductance representation reveals that the h-parameters are 
constrained 

the conductance matrix must be positive definite. 

The controlled-source model hides this constraint. 
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EVALUATE PARAMETERS: 
Ycc = 3.33 µmho 
Ycb =33,333 µmho 
Ybc =–0.107 µmho 
Ybb =133.3 µmho 

In µmho units: 
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Note the extreme asymmetry of the conductance matrix. 
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Its symmetric and anti-symmetric components are: 
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The symmetric component is purely dissipative.   

The anti-symmetric component describes a gyrational coupling between 
input (base) and output (collector).   

Because of this gyrational coupling, a resonant circuit may be constructed 
using this transistor, two capacitors and no inductors.   
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Consider connecting a capacitor Cc = 1000 pF across the output (collector to 
grounded emitter) and a capacitor Cb = 0.1 µF across the input (base to grounded 
emitter) as shown.   

 
Time-differentiating the constitutive equations for these capacitors results in the 
following. 

d
dt  ec = 

1
Cc

  ic 

d
dt  eb = 

1
Cb

  ib 
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Substituting for the collector and base currents using the transistor conductance 
matrix, state equations for this linear system may be written as follows. 
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The characteristic equation for this system is 

s2 + (Ycc/Cc + Ybb/Cb) s + (YccYbb – YbcYcb)/CcCb = 0 
The parameters listed above yield  
ωn = 6.32 KHz 
and  
ζ = 0.37 
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BIASING 
The AC parameters of the transistor are only valid if the device is properly 
"biased" at DC.   
An appropriate network of resistors must be added.  A typical common-emitter 
biasing circuit with "emitter degeneration" (an emitter resistor) is shown.   

 
These resistors add to the damping in the circuit and may suppress resonance. 
but the central point still holds: two capacitors and a transistor can make a 
resonant circuit because the transistor contains a "hidden" gyrator. 

Why does "biasing" matter? 
The device only amplifies if operated far from equilibrium 
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LARGE-SIGNAL TRANSISTOR BEHAVIOR: THE EBERS-MOLL MODEL. 
(describes static characteristics only — ignores important dynamics such 
as charge storage on the junction regions) 

The Ebers-Moll model describes a transistor as a pair of coupled back-to-
back diodes.   

The coupling is usually represented as a pair of current-controlled current 
sources. 

ib

ic

ie

i rrα

if fα

if

ir

collector

base

emitter  
For the sign convention shown, current continuity yields 

ie = if – αr ir 

ic = αf if -– ir 
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The currents if and ir refer to the forward and reverse currents of the base-to-
emitter and base-to-collector diodes respectively.   
Each is related to the corresponding voltage drop through the usual exponential 
diode relation.   

if = Ies[e(eb–ee)/Vt  – 1] 

ir = Ics[e(eb–ec)/Vt  – 1] 
Physical constraints of the transistor require that αr Ics = αf Ies.  For a typical 
transistor: 

αf = 0.99  
αr = 0.01 
Ies = 2.0 x 10-15 amps 
Vt = 25.3 x 10-3 volts 
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An NPN transistor is usually operated in the "active" region with the emitter 
diode strongly forward biased (i.e. conducting with eb >> ee) and the collector 
diode strongly reverse biased (i.e. not conducting with ec >> eb).   
The collector diode current is small and insensitive to changes in the voltage 
drop from collector to base.  As a result, 

ie ≈ if - αr Ics ≈ if 

ie ≈ Ies[e(eb–ee)/Vt  - 1] 
The collector current is primarily determined by its coupling to the emitter 
current 

ic ≈ αf if ≈ αf ie  
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Applying current continuity to the entire network (i.e. treating it as a node) we 
may relate collector current to base current as follows. 

ie = ib + ic 

ic ≈ αf (ib + ic) 

ic ≈ 
αf

1–αf
  ib ≈ β ib 

where β is the transistor forward current gain.   
In practice β may vary between 50 to 1000, but α only changes from 0.98 to 0.999.   
Thus to a close approximation the collector current is 

ic ≈ Ies[e(eb–ee)/Vt  – 1] 

 

NOTE: 
this model describes the transistor by a relation between an output (collector) 
current and an input voltage drop (from emitter to base) 
This again shows the fundamentally gyrational character of the transistor.   
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AMPLIFICATION IS A NON-EQUILIBRIUM PHENOMENON 

Linearizing the Ebers-Moll model reveals an interesting property of 
amplifiers in general:  

operated near equilibrium, amplifiers cease to amplify. 
Consider the grounded-emitter configuration described above. 
The elements of the locally linear conductance matrix are as follows. 

Ycc = ∂ic/∂ec 

Ycb = ∂ic/∂eb 

Ybc = ∂ib/∂ec 

Ybb = ∂ib/∂eb 
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We may use the current continuity conditions to evaluate these. 

d ic = αf d if – d ir 

d ie = d if – αr d ir 

d ib = d ie – d ic = (1 – αf) d if + (1 – αr) d ir 
From the diode equations, 

∂if/∂ec = 0 

∂if/∂eb = Ies[e(eb–ee)/Vt ] 
1
Vt

  

∂ir/∂ec = Ics[e(eb–ec)/Vt ] 
–1
Vt

  

∂ir/∂eb = Ics[e(eb–ec)/Vt ] 
1
Vt
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Substituting 

∂ic/∂ec = Ics[e(eb–ec)/Vt ] 
1
Vt

  

∂ic/∂eb = αf Ies[e(eb–ee)/Vt ] 
1
Vt

  – Ics[e(eb–ec)/Vt ] 
1
Vt

  

∂ib/∂ec = –(1 – αr) Ics[e(eb–ec)/Vt ] 
1
Vt

  

∂ib/∂eb = (1 – αf) Ies[e(eb–ee)/Vt ] 
1
Vt

   

 + (1 – αr) Ics[e(eb–ec)/Vt ] 
1
Vt

  

Normal operating conditions (denoted by subscript n) are defined by ee = 0, eb > 
ee + Vt and ec >> eb.   

Under those conditions, e(eb–ec)/Vt  is very close to zero, whereas e(eb–ee)/Vt  is 
a positive number greater than unity (typically very large) whose exact value is 
strong function of eb.   
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Evaluating,  

Ycc = ∂ic/∂ec ≈ 0 

Ycb = ∂ic/∂eb ≈ αf 
Ies

Vt
 eeb/Vt

n  

Ybc = ∂ib/∂ec ≈ 0 

Ybb = ∂ib/∂eb ≈ (1 – αf) 
Ies

Vt
 eeb/Vt

n  

Thus, under normal operating conditions far from equilibrium, the locally 
linearized conductance matrix is strongly asymmetric as we saw before. 
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Equilibrium conditions are defined by ee = eb = ec = 0.   
At equilibrium, both exponentials are equal to unity.   
Evaluating, 

Ycc = ∂ic/∂ec = 
Ics

Vt
  

Ycb = ∂ic/∂eb = αf 
Ies

Vt
  – 

Ics

Vt
  

Ybc = ∂ib/∂ec = –(1 – αr) 
Ics

Vt
  = αr 

Ics

Vt
  – 

Ics

Vt
  

Ybb = ∂ib/∂eb = (1 – αf) 
Ies

Vt
  + (1 – αr) 

Ics

Vt
  

Using the relation between the diode saturation currents, αr Ics = αf Ies, we find 
that 

Ycb = αr 
Ics

Vt
  – 

Ics

Vt
  = Ybc 
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CONCLUSION: 

If the transistor is operated about equilibrium, the locally linearized 
conductance matrix becomes symmetric.   

As a result, the transistor behavior is purely dissipative without any 
gyrational coupling between input and output.   

Relating this to the controlled-source model of the transistor,  

hfe = Ycb/Ybb 

hre = –Ybc/Ybb 
— the forward current gain is identical to the reverse voltage gain.   

 
OPERATED ABOUT EQUILIBRIUM,  

the embedded gyrator disappears 

the transistor fails to amplify 
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