- Manipulation requires interaction
 - object behavior affects control of force and motion
- Independent control of force and motion is not possible
 - object behavior relates force and motion
 - contact a rigid surface: *kinematic* constraint
 - move an object: *dynamic* constraint
- Accurate control of force *or* motion requires detailed models of
 - manipulator dynamics
 - object dynamics
 - object dynamics are usually known poorly, often not at all

Object Behavior

- Can object forces be treated as external (exogenous) disturbances?
 - the usual assumptions don't apply:
 - "disturbance" forces depend on manipulator state
 - forces often aren't small by any reasonable measure
- Can forces due to object behavior be treated as modeling uncertainties?
 - yes (to some extent) but the usual assumptions don't apply:
 - command and disturbance frequencies overlap
- Example: two people shaking hands
 - how each person moves influences the forces evoked
 - "disturbance" forces are state-dependent
 - each may exert comparable forces and move at comparable speeds
 - command & "disturbance" have comparable magnitude & frequency

Alternative: control port behavior

- Port behavior:
 - system properties and/or behaviors "seen" at an interaction port
- Interaction port:
 - characterized by conjugate variables that define power flow

 $\begin{cases} \text{power in} & P = \mathbf{e}^{\mathbf{t}} \mathbf{f} \\ \mathbf{e} = [e_1 \cdots e_n]^t & \text{efforts (forces)} \\ \mathbf{f} = [f_1 \cdots f_n]^t & \text{flows (velocities)} \end{cases}$

• Key point:

port behavior is unaffected by contact and interaction

Impedance & Admittance

- Impedance and admittance characterize interaction
 - a dynamic generalization of resistance and conductance
- Usually introduced for linear systems but generalizes to nonlinear systems
 - state-determined representation:
 - this form may be derived from or depicted as a network model

electrical capacitor $Z(s) = \frac{e(s)}{i(s)} = \frac{1}{Cs}$ electrical inductor $Z(s) = \frac{e(s)}{i(s)} = L(s)$

 $\begin{cases} \dot{z} = Z_s(z, V) & \text{State equations} \\ F = Z_o(z, V) & \text{Output equations} \\ P = F^t V & \text{Constraint on input & output} \\ z \in \Re^n, F \in \Re^m, V \in \Re^m, P \in \Re \end{cases}$

nonlinear 1D elastic element (spring) $\dot{x} = v$ $f = \Phi(x)$

Interaction Control

Impedance & Admittance (continued)

- Admittance is the causal dual of impedance
 - Admittance: flow out, effort in
 - Impedance: effort out, flow in
- Linear system: admittance is the inverse of impedance
- Nonlinear system:
 - causal dual is well-defined:
 - but may not correspond to any impedance
 - inverse may not exist

$$Y(s) = Z(s)^{-1}$$

electrical capacitor

$$Y(s) = \frac{i(s)}{e(s)} = Cs$$

$$\begin{cases} \dot{y} = Y_s(y, F) \\ V = Y_o(y, F) \\ P = F^t V \\ y \in \Re^n, F \in \Re^m, V \in \Re^m, P \in \Re \end{cases}$$

nonlinear 1D inertial element (mass)

$$\dot{p} = f$$
$$v = \Psi(p)$$

Impedance as dynamic stiffness

- Impedance is also loosely defined as a dynamic generalization of stiffness
 - effort out, displacement in
- Most useful for mechanical systems
 - displacement (or generalized position) plays a key role

$$\begin{cases} \dot{z} = Z_s(z, X) \\ F = Z_o(z, X) \\ dW = F^t dX \\ z \in \Re^n, F \in \Re^m, X \in \Re^m, P \in \Re \end{cases}$$

Interaction control: causal considerations

- What's the best input/output form for the manipulator?
- The set of objects likely to be manipulated includes
 - inertias
 - minimal model of most movable objects
 - kinematic constraints
 - simplest description of surface contact
- Causal considerations:
 - inertias *prefer* admittance causality
 - constraints *require* admittance causality
 - compatible manipulator behavior should be an impedance
- An ideal controller should make the manipulator behave as an impedance
- Hence impedance control
 - Hogan 1979, 1980, 1985, etc.

Mod. Sim. Dyn. Sys.

Robot Impedance Control

- Works well for interaction tasks:
 - Automotive assembly
 - (Case Western Reserve University, US)
 - Food packaging
 - (Technical University Delft, NL)
 - Hazardous material handling
 - (Oak Ridge National Labs, US)
 - Automated excavation
 - (University of Sydney, Australia)
 - ... and many more

- Facilitates multi-robot / multi-limb coordination
 - Schneider et al., Stanford
- Enables physical cooperation of robots and humans
 - Kosuge et al., Japan
 - Hogan et al., MIT

OSCAR the robot

Photograph removed due to copyright restrictions.

E.D.Fasse & J.F.Broenink, U. Twente, NL

Mod. Sim. Dyn. Sys.

Interaction Control

Network modeling perspective on interaction control

- Port concept
 - control interaction port behavior
 - port behavior is unaffected by contact and interaction
- Causal analysis
 - impedance and admittance characterize interaction
 - object is likely an admittance
 - control manipulator impedance
- Model structure
 - structure is important
 - power sources are commonly modeled as equivalent networks
 - Thévenin equivalent
 - Norton equivalent
- Can equivalent network structure be applied to interaction control?

Equivalent networks

- Initially applied to networks of static linear elements
 - Sources & linear resistors
 - Thévenin equivalent network
 - M. L. Thévenin, Sur un nouveau théorème d'électricité dynamique.
 Académie des Sciences, Comptes Rendus 1883, 97:159-161
 - Thévenin equivalent source—power supply or transfer
 - Thévenin equivalent impedance—interaction
 - Connection—series / common current / 1-junction
 - Norton equivalent network is the causal dual form
- Subsequently applied to networks of dynamic linear elements
 - Sources & (linear) resistors, capacitors, inductors

Nonlinear equivalent networks

- Can equivalent networks be defined for nonlinear systems?
 - Nonlinear impedance and admittance can be defined as above
 - Thévenin & Norton sources can also be defined
 - Hogan, N. (1985) *Impedance Control: An Approach to Manipulation*.
 ASME J. Dynamic Systems Measurement & Control, Vol. 107, pp. 1-24.
- However...
 - In general the junction structure cannot
- In other words:
 - separating the pieces is always possible
 - re-assembling them by superposition is not

Nonlinear equivalent network for interaction control

- One way to preserve the junction structure:
 - specify an equivalent network structure in the (desired) interaction behavior
 - provides key superposition properties
- Specifically:
 - *nodic* desired impedance
 - does not require inertial reference frame
 - "virtual" trajectory
 - "virtual" as it need not be a realizable trajectory

 $\mathbf{V}_0 = \mathbf{V}_0 : \{\mathbf{c}\}$ virtual trajectory $\Delta \mathbf{V} = \mathbf{V}_0 - \mathbf{V}$

network junction structure (0 junction) $\dot{\mathbf{z}} = \mathbf{Z}_{s}(\mathbf{z}, \Delta \mathbf{V}): \{c\}$ $\mathbf{F} = \mathbf{Z}_{o}(\mathbf{z}, \Delta \mathbf{V}): \{c\}$ nodic impedance

: {c} denotes modulation by control inputs

Norton equivalent network

Mod. Sim. Dyn. Sys.

Virtual trajectory

- Nodic impedance:
 - Defines desired interaction dynamics
 - Nodic because input velocity is defined relative to a "virtual" trajectory
- Virtual trajectory:
 - like a motion controller's reference or nominal trajectory *but* no assumption that dynamics are fast compared to motion
 - "virtual" because it need not be realizable
 - e.g., need not be confined to manipulator's workspace

Interaction Control

Superposition of "impedance forces"

- Minimal object model is an inertia
 - it responds to the sum of input forces
 - in network terms: it comes with an associated 1-junction
- This guarantees *linear* summation of component impedances...
- ...even if the component impedances are *nonlinear*

$$\Delta \mathbf{V}_{1} = \mathbf{V}_{o1} - \mathbf{V}$$

$$\dot{\mathbf{z}}_{1} = \mathbf{Z}_{s1}(\mathbf{z}_{1}, \Delta \mathbf{V}_{1})$$

$$\mathbf{F}_{1} = \mathbf{Z}_{o1}(\mathbf{z}_{1}, \Delta \mathbf{V}_{1})$$

$$V_{o1}:S_{f} \longrightarrow 0$$

$$\dot{\mathbf{F}}_{1} = \mathbf{Z}_{o2}(\mathbf{z}_{2}, \Delta \mathbf{V}_{2})$$

$$\mathbf{V}_{o2}:S_{f} \longrightarrow F_{2}$$

$$\mathbf{Z}_{s2}(\mathbf{z}_{2}, \Delta \mathbf{V}_{2})$$

$$\mathbf{F}_{2} = \mathbf{Z}_{o2}(\mathbf{z}_{2}, \Delta \mathbf{V}_{2})$$

$$\mathbf{V}_{o3}:S_{f} \longrightarrow 0$$

$$\mathbf{Z}_{2}:Z$$

$$\Delta \mathbf{V}_{3} = \mathbf{V}_{o3} - \mathbf{V}$$

$$\dot{\mathbf{z}}_{3} = \mathbf{Z}_{s3}(\mathbf{z}_{3}, \Delta \mathbf{V}_{3})$$

$$\mathbf{V}_{o3}:S_{f} \longrightarrow 0$$

$$\mathbf{F}_{3} = \mathbf{Z}_{o3}(\mathbf{z}_{3}, \Delta \mathbf{V}_{3})$$

$$\mathbf{Z}_{3}:Z$$

$$\mathbf{V}_{o3}:S_{f} \longrightarrow 0$$

$$\mathbf{F}_{3}:Z_{o3}(\mathbf{z}_{3}, \Delta \mathbf{V}_{3})$$

Mod. Sim. Dyn. Sys.

Interaction Control

One application: collision avoidance

- Impedance control also enables *non*-contact (virtual) interaction
 - Impedance component to acquire target:
 - Attractive force field (potential "valley")
 - Impedance component to prevent unwanted collision:
 - Repulsive force-fields (potential "hills")
 - One per object (or part thereof)
 - Total impedance is the sum of these components
 - Simultaneously acquires target while preventing collisions
 - Works for *moving* objects and targets
 - Update their location by feedback to the (nonlinear) controller
 - Computationally simple
 - Initial implementation used 8-bit Z80 processors

•	Andrews & Hogan,	1983	Andrews, J. R. and Hogan, N. (1983) Impedance Control as a
	e ·		Framework for Implementing Obstacle Avoidance in a Manipulator,
			pp. 243-251 in D. Hardt and W.J. Book, (eds.), Control of
			Manufacturing Processes and Robotic Systems, ASME.

Mod. Sim. Dyn. Sys.

Interaction Control

High-speed collision avoidance

- Static protective (repulsive) fields must extend beyond object boundaries
 - may slow the robot unnecessarily
 - may occlude physically feasible paths
 - especially problematical if robot links are protected
- Solution: *time-varying* impedance components
 - protective (repulsive) fields grow as robot speeds up, shrink as it slows down
 - Fields shaped to yield maximum acceleration or deceleration
 - Newman & Hogan, 1987 Newman, W. S. and Hogan, N. (1987) *High Speed Robot Control and Obstacle Avoidance Using Dynamic Potential Functions*, proc. IEEE Int. Conf. Robotics & Automation, Vol. 1, pp. 14-24.
 - See also extensive work by Khatib et al., Stanford

Impedance Control Implementation

- Controlling robot impedance is an ideal
 - like most control system goals it may be difficult to attain
- How do you control impedance or admittance?
- One primitive but highly successful approach:
 - Design low-impedance hardware
 - Low-friction mechanism
 - Kinematic chain of rigid links
 - Torque-controlled actuators
 - e.g., permanent-magnet DC motors
 - high-bandwidth current-controlled amplifiers
 - Use feedback to increase output impedance
 - (Nonlinear) position and velocity feedback control
- "Simple" impedance control

Robot Model

Effort-driven inertia •

 $\mathbf{I}(\boldsymbol{\theta})\dot{\boldsymbol{\omega}} + \mathbf{C}(\boldsymbol{\theta},\boldsymbol{\omega}) + \mathbf{G}(\boldsymbol{\theta}) = \boldsymbol{\tau}_{motor} + \boldsymbol{\tau}_{interaction}$

 θ : generalized coordinates, joint angles, configuration variables

- ω : generalized velocities, joint angular velocities
- τ : generalized forces, joint torques
- I: configuration-dependent inertia
- C: inertial coupling (Coriolis & centrifugal accelerations)
- **G**: potential forces (gravitational torques)

Linkage kinematics transform interaction forces to interaction torques

 $\mathbf{X} = \mathbf{L}(\mathbf{\theta})$ $\mathbf{V} = \dot{\mathbf{X}} = (\partial \mathbf{L} / \partial \boldsymbol{\theta}) \dot{\boldsymbol{\theta}} = \mathbf{J}(\boldsymbol{\theta}) \boldsymbol{\omega}$ $\boldsymbol{\tau}_{interaction} = \mathbf{J}(\boldsymbol{\theta})^t \mathbf{F}_{interaction}$

- X: interaction port (end-point) position V: interaction port (end-point) velocity
- **F**_{interaction}: interaction port force
- L: mechanism kinematic equations
- J: mechanism Jacobian

Mod. Sim. Dyn. Sys.

Interaction Control

Simple Impedance Control

- Target end-point behavior
 - Norton equivalent network with elastic and viscous impedance, possibly nonlinear
- Express as equivalent (jointspace) configuration-space behavior
 - use kinematic transformations
- This defines a position-andvelocity-feedback controller...
 - A (non-linear) variant of PD (proportional+derivative) control
- ...that will implement the target behavior

$$\mathbf{F}_{impedance} = \mathbf{K} \big(\mathbf{X}_o - \mathbf{X} \big) + \mathbf{B} \big(\mathbf{V}_o - \mathbf{V} \big)$$

- \mathbf{X}_{o} : virtual position
- **V**_o: virtual velocity
- K: displacement-dependent (elastic) force function
- **B**: velocity-dependent force function

$$\boldsymbol{\tau}_{motor} = \mathbf{J}(\boldsymbol{\theta})^t \mathbf{F}_{impedance}$$

$$\boldsymbol{\tau}_{motor} = \mathbf{J}(\boldsymbol{\theta})^{t} \left(\mathbf{K}(\mathbf{X}_{o} - \mathbf{L}(\boldsymbol{\theta})) + \mathbf{B}(\mathbf{V}_{o} - \mathbf{J}(\boldsymbol{\theta})\boldsymbol{\omega}) \right)$$

Dynamics of controller impedance coupled to mechanism inertia with interaction port:

$$I(\theta)\dot{\omega} + C(\theta, \omega) + G(\theta) =$$

$$J(\theta)^{t} (K(X_{o} - L(\theta)) + B(V_{o} - J(\theta)\omega))$$

$$+ J(\theta)^{t} F_{interaction}$$

Mod. Sim. Dyn. Sys.

Mechanism singularities

- Impedance control also facilitates interaction with the robot's own mechanics
 - Compare with motion control:
- Position control maps desired end-point trajectory onto configuration space (joint space)
 - Requires inverse kinematic equations
 - Ill-defined, no general algebraic solution exists
 - one end-point position usually corresponds to many configurations
 - some end-point positions may not be reachable
- Resolved-rate motion control uses inverse Jacobian
 - Locally linear approach, will find a solution if one exists
 - At some configurations Jacobian becomes singular
 - Motion is not possible in one or more directions
- A typical motion controller won't work at or near these singular configurations

Mod. Sim. Dyn. Sys.

Interaction Control

 $\mathbf{X} = \mathbf{L}(\mathbf{\theta})$ $\mathbf{\theta}_{desired} = \mathbf{L}^{-1}(\mathbf{X}_{desired})$

$$\mathbf{V} = \mathbf{J}(\mathbf{\theta})\mathbf{\omega}$$

$$\mathbf{\omega}_{desired} = \mathbf{J}(\mathbf{\theta})^{-1}\mathbf{V}_{desired}$$

Mechanism junction structure

- Mechanism kinematics relate configuration space {0} to workspace {X}
 - In network terms this defines a multiport modulated transformer
 - Hence power conjugate variables are well-defined in *opposite* directions

- Generalized coordinates uniquely define mechanism configuration
 - By definition
- Hence the following maps are *always* well-defined
 - generalized coordinates
 (configuration space) to endpoint coordinates (workspace)
 - generalized velocities to workspace velocity
 - workspace force to generalized force
 - workspace momentum to generalized momentum

Mod. Sim. Dyn. Sys.

Interaction Control

Control at mechanism singularities

- Simple impedance control law was derived by transforming desired behavior...
 - Norton equivalent network in workspace coordinates
 - ... from workspace to configuration (joint) space
- All of the required transformations are *guaranteed* well-defined at *all* configurations
 - $\mathbf{X} \leftarrow \mathbf{\theta}$ $- \mathbf{V} \leftarrow \mathbf{\omega} \qquad \mathbf{\tau}_{motor} = \mathbf{J}(\mathbf{\theta})^t (\mathbf{K}(\mathbf{X}_o - \mathbf{L}(\mathbf{\theta})) + \mathbf{B}(\mathbf{V}_o - \mathbf{J}(\mathbf{\theta})\mathbf{\omega}))$
 - $\ \tau \mathop{\Leftarrow} F$
- Hence the simple impedance controller can operate *near*, *at and through* mechanism singularities

Generalized coordinates

- Aside:
 - Identification of generalized coordinates requires care
 - Independently variable
 - Uniquely define mechanism configuration
 - Not themselves unique
 - Actuator coordinates are often suitable, but not always
 - Example: Stewart platform
 - Identification of generalized forces also requires care
 - Power conjugates to generalized velocities
 - $P = \mathbf{\tau}^t \boldsymbol{\omega}$ or $dW = \mathbf{\tau}^t d\boldsymbol{\theta}$
 - Actuator forces are often suitable, not always

Inverse kinematics

- Generally a tough computational problem
- Modeling & simulation afford simple, effective solutions
 - Assume a simple impedance controller
 - Apply it to a simulated mechanism with simplified dynamics
 - Guaranteed convergence properties
 - Hogan 1984
 - Slotine & Yoerger 1987

Hogan, N. (1984) *Some Computational Problems Simplified by Impedance Control*, proc. ASME Conf. on Computers in Engineering, pp. 203-209.

Slotine, J.-J.E., Yoerger, D.R. (1987) A Rule-Based Inverse Kinematics Algorithm for Redundant Manipulators Int. J. Robotics & Automation 2(2):86-89

- Same approach works for redundant mechanisms
 - Redundant: more generalized coordinates than workspace coordinates
 - Inverse kinematics is fundamentally "ill-posed"
 - Rate control based on Moore-Penrose pseudo-inverse suffers "drift"
 - Proper analysis of effective stiffness eliminates drift
 - Mussa-Ivaldi & Hogan 1991

Mussa-Ivaldi, F. A. and Hogan, N. (1991) *Integrable Solutions of Kinematic Redundancy via Impedance Control.* Int. J. Robotics Research, 10(5):481-491

Mod. Sim. Dyn. Sys.

Interaction Control

Intrinsically variable impedance

- Feedback control of impedance suffers inevitable imperfections
 - "parasitic" sensor & actuator dynamics
 - communication & computation delays
- Alternative: control impedance using intrinsic properties of the actuators and/or mechanism
 - Stiffness
 - Damping
 - Inertia

Intrinsically variable stiffness

- Engineering approaches
 - Moving-core solenoid
 - Separately-excited DC machine
 - Fasse et al. 1994
 - Variable-pressure air cylinder
 - Pneumatic tension actuator
 - McKibben "muscle"
 - …and many more
- Mammalian muscle
 - antagonist co-contraction increases stiffness & damping
 - complex underlying physics
 - see 2.183
 - increased stiffness requires increased force

Fasse, E. D., Hogan, N., Gomez, S. R., and Mehta, N. R. (1994) *A Novel Variable Mechanical-Impedance Electromechanical Actuator*. Proc. Symp. Haptic Interfaces for Virtual Environment and Teleoperator Systems, ASME DSC-Vol. 55-1, pp. 311-318.

Mod. Sim. Dyn. Sys.

Interaction Control

Opposing actuators at a joint

- Assume
 - constant moment arms
 - linear force-length relation

f: force; l: length; k: actuator stiffness q: joint angle; t: torque; K: joint stiffness subscripts: g: agonist; n: antagonist, o: virtual

- Equivalent behavior:
- **Opposing torques subtract**
- Opposing impedances add
 - Joint stiffness positive if actuator stiffness positive

Mod. Sim. Dyn. Sys.

Interaction Control

Configuration-dependent moment arms

- Connection of linear actuators usually makes moment arm vary with configuration
- Joint stiffness, K:
 - Second term always positive
 - First term may be *negative*

Mod. Sim. Dyn. Sys.

This is the "tent-pole" effect

- Consequences of configurationdependent moment arms:
- Opposing "ideal" (zero-impedance) tension actuators
 - agonist moment grows with angle, antagonist moment declines
 - always unstable
- Constant-stiffness actuators
 - stable only for limited tension
- Mammalian muscle:
- stiffness is proportional to tension
 - good approximation of complex behavior
 - can be stable for all tension

- Take-home messages:
- Kinematics matters
 - "Kinematic" stiffness may dominate
- Impedance matters
 - Zero output impedance may be highly undesirable

Mod. Sim. Dyn. Sys.

Intrinsically variable inertia

- Inertia is difficult to modulate via feedback but mechanism inertia is a strong function of configuration
- Use excess degrees of freedom to modulate inertia
 - e.g., compare contact with the fist or the fingertips
- Consider the apparent (translational) inertia at the tip of a 3-link openchain planar mechanism
 - Use mechanism transformation properties
- Translational inertia is usually characterized by $\mathbf{p} = \mathbf{M}\mathbf{v}$
- Generalized (configuration space) inertia is
- $\eta = I(\theta)\omega$

- Jacobian: $\mathbf{v} = \mathbf{J}(\mathbf{\theta})\boldsymbol{\omega}$ $\mathbf{\eta} = \mathbf{J}(\mathbf{\theta})^{\mathrm{t}}\mathbf{p}$
 - Corresponding tip (workspace) inertia:

$$\mathbf{p} = \mathbf{J}(\mathbf{\theta})^{-t} \mathbf{I}(\mathbf{\theta}) \mathbf{J}(\mathbf{\theta})^{-1} \mathbf{v}$$
$$\mathbf{M}_{tip} = \mathbf{J}(\mathbf{\theta})^{-t} \mathbf{I}(\mathbf{\theta}) \mathbf{J}(\mathbf{\theta})^{-1}$$

• Snag: $J(\theta)$ is not square—inverse $J(\theta)^{-1}$ does not exist

Mod. Sim. Dyn. Sys.

Causal analysis

- Inertia is an admittance
 - prefers integral causality
- Transform inverse configuration-space inertia
 - Corresponding tip (workspace) inertia
 - This transformation is *always* well-defined
- Does $I(\theta)^{-1}$ always exist?

$$\mathbf{v} = \mathbf{M}^{-1}\mathbf{p}$$
$$\boldsymbol{\omega} = \mathbf{I}(\boldsymbol{\theta})^{-1}\boldsymbol{\eta}$$

- $\mathbf{v} = \mathbf{J}(\mathbf{\theta})\mathbf{I}(\mathbf{\theta})^{-1}\mathbf{J}(\mathbf{\theta})^{t}\mathbf{p}$ $\mathbf{M}_{tip}^{-1} = \mathbf{J}(\mathbf{\theta})\mathbf{I}(\mathbf{\theta})^{-1}\mathbf{J}(\mathbf{\theta})^{t}$
- consider how we constructed $I(\theta)$ from individual link inertias
- $I(\theta)$ must be symmetric positive definite, hence its inverse exists
- Does \mathbf{M}_{tip}^{-1} always exist?
 - yes, but sometimes it loses rank
 - inverse mass goes to zero in some directions—can't move that way
 - causal argument: input force can always be applied
 - mechanism will "figure out" whether & how to move

Mod. Sim. Dyn. Sys.