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INTRODUCTION 
GOAL OF THE SUBJECT 
Methods for mathematical modeling of engineering systems 

Computational approaches are ubiquitous in engineering 
They all depend upon a mathematical representation 
Formulation of an appropriate mathematical model is essential 
—the critical link between analysis and engineering reality  

FOCUS OF THIS COURSE 
The modeling process 

—a systematic approach to formulating practical mathematical models of 
physical systems  
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MULTI-DOMAIN MODELING 
ENGINEERING SYSTEMS ARE BECOMING PROGRESSIVELY MORE INTEGRATED 

They involve interactions between phenomena in different engineering domains 
They depend on strong coupling between  

electronics 
mechanics 
fluid flow 
thermal processes 
chemical processes 
etc.  

Requires a multi-disciplinary approach covering each of these domains  
INTEGRATED MODELS OF MULTI-DOMAIN BEHAVIOR REQUIRE SPECIAL CARE  

—modeling assumptions that appear reasonable in one domain can be 
problematical in others  
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ENERGY-BASED APPROACH 
THE CENTRAL THEME OF THIS COURSE: 

 a multi-disciplinary, integrated approach to modeling physical system behavior 
in different engineering domains  

The course will present an energy-based approach 
We will make extensive use of bond graph notation 
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SIMPLIFIED MODELS 
Developing models is the goal of much of engineering and most of science 

We’re not (quite) that ambitious  
OUR AIM:  

Simplified models of physical system dynamic behavior  
SIMPLICITY VS. COMPETENCE 

Competence:  how faithfully a model represents important physical system 
behavior 

"Important behavior" is defined by context 
We will use control system design and implementation for context 
The methods are relevant to many other engineering applications 

Modeling and Simulation of Dynamic Systems Introduction page 4 



 

WHY CONTROL SYSTEMS?  
This application provides a natural incentive for model simplicity  

Design, implementation and operation of control systems leans heavily on 
mathematical models 

Design (e.g., LQG, pole-placement) 
Measurement (e.g., Kalman filter) 
Control (e.g., adaptive) 
Diagnosis (e.g., fault identification) 

Model complexity directly affects cost and performance 
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NETWORK MODELS 
Continuing advances in computer technology permit mathematical models of 
increasingly finer detail 

—but this is not without cost  
Fine-grained models may improve numerical predictive accuracy 

but fine-grained models may obscure insight 
INSIGHT IS THE MAIN GOAL OF MODELING 

Our goal will be a state-determined representation 
the point of departure for modern control system design analysis and 
implementation 
finite number of state variables ( )
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Therefore we will use networks of elements 
a generalization of familiar circuit models 
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COURSE OUTLINE 
INTRODUCTORY REVIEW OF NETWORK MODELS 

collections of the familiar “lumped-parameter” elements: mass, spring, 
damper, inductor, capacitor, resistor, etc. 

Model representation using block diagrams and bond graphs 
EXTENSION TO MULTI-VARIABLE NETWORK COMPONENTS 

Model representation using multi-port elements 
Multi-port elements represent more complex behavior while retaining the 
clarity and properties of network models  
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APPLICATIONS OF MULTI-VARIABLE NETWORK MODELS 
Multi-port and nonlinear elements will be applied to 

different kinds of energy transduction 
electrical to mechanical 
mechanical to fluid 
etc. 

thermal processes 
nonlinear mechanical systems 
convection and matter transport processes 
chemical processes 
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APPLICATIONS 
Examples will emphasize mechanical, electrical and fluid systems and may 
include 

electrical machines 
fluid power control systems 
robotics 
power electronics 
thermal systems 
compressible gas processes 
polymeric actuators 
etc. 
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THEORY 
Some fundamental theoretical aspects of multi-variable network models will be 
explored 
How physical system structure affects control-relevant behavior 

zero dynamics 
relative degree 
controllability 
observability 
etc. 
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