
 

EXAMPLE: IDEAL GAS 

MANY LOW-DENSITY GASES AT MODERATE PRESSURES MAY BE ADEQUATELY MODELED AS 
IDEAL GASES.   

Are the ideal gas model equations compatible with models of dynamics in 
other domains?  

AN IDEAL GAS IS OFTEN CHARACTERIZED BY THE RELATION 

PV = mRT 
P: (absolute) pressure 
V: volume 
m: mass 
R: gas constant 
T: absolute temperature 
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IN THE FORM 

PV = mRT 

THE IDEAL GAS EQUATION IS A RELATION BETWEEN VARIABLES WITH NO CAUSAL 
MEANING. 

Used as an assignment operator relating input to output 

PV := mRT 

it would imply that both effort, P, and displacement, V, on the mechanical 
power port are outputs. 

That is physically meaningless. 

Similarly, the form 

T := PV/mR 

would imply that both effort, P, and displacement, V, on the mechanical power 
port are inputs. 

That is also physically meaningless. 
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THE IDEAL GAS EQUATION MAY BE RE-ARRANGED INTO TWO FORMS THAT ADMIT A 
MEANINGFUL CAUSAL INTERPRETATION. 

ONE FORM IS COMPATIBLE WITH THE CAUSAL ASSIGNMENT ASSOCIATED WITH THE 
HELMHOLTZ FUNCTION. 

the “Helmholtz form” 

P := mRT/V 

THE OTHER FORM IS COMPATIBLE WITH THE CAUSAL ASSIGNMENT ASSOCIATED WITH THE 
GIBBS FUNCTION. 

the “Gibbs form” 

V := mRT/P 
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AN IMPORTANT POINT 

THE RELATION PV = MRT DOES NOT COMPLETELY CHARACTERIZE THE GAS.   

We model the interacting thermal and mechanical effects using a two-port 
capacitor. 

A two-port capacitor needs two constitutive equations.   

THE SECOND IS USUALLY OBTAINED BY ASSUMING A PARTICULAR RELATION BETWEEN 
INTERNAL ENERGY AND TEMPERATURE. 

Common practice:  
assume cv is constant. 
cv: specific heat at constant volume 

 

WHAT’S “SPECIFIC HEAT”? 

AND HOW DOES IT DETERMINE THE RELATION BETWEEN INTERNAL ENERGY AND 
TEMPERATURE? 

“SPECIFIC” IN THIS CONTEXT MEANS “PER UNIT MASS”. 
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EXTENSIVE VARIABLES: 

ALL QUANTITIES THAT VARY WITH THE AMOUNT (OR EXTENT) OF A SUBSTANCE (ALL 
OTHER FACTORS BEING EQUAL) ARE EXTENSIVE VARIABLES (OR PROPERTIES). 

mass 

volume 

(total) entropy 

(total) internal energy 

(total) enthalpy 

etc. 
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EVERY EXTENSIVE VARIABLE (PROPERTY) HAS A “SPECIFIC” COUNTERPART. 

specific internal energy, u 

u = U/m 
internal energy per unit mass 

specific entropy, s 

s = S/m 
entropy per unit mass 

specific volume, v 

v = V/m 
volume per unit mass 

the inverse of density, ρ 

v = 1/ρ 

(Note: “specific mass” -- mass per unit mass -- has dubious value and usually 
is not defined.) 
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EXTENSIVE VS. INTENSIVE 

INTENSIVE VARIABLES: 

ALL QUANTITIES THAT DO NOT VARY WITH THE AMOUNT (OR EXTENT) OF A SUBSTANCE 
(ALL OTHER FACTORS BEING EQUAL) ARE INTENSIVE VARIABLES (OR PROPERTIES). 

pressure 

temperature 

chemical potential 

etc. 

THUS WE DO NOT DEFINE “SPECIFIC” INTENSIVE VARIABLES. 

— “temperature per unit mass” or “pressure per unit mass” would have no 
particular meaning. 
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THE GIBBS RELATION (A DIFFERENTIAL FORM OF THE FIRST LAW) MAY BE WRITTEN IN 
TERMS OF SPECIFIC VARIABLES. 

dU = TdS – PdV 

PER UNIT MASS: 

du = Tds – Pdv 

IF VOLUME REMAINS CONSTANT, (SPECIFIC) HEAT FLOW CHANGES (SPECIFIC) INTERNAL 
ENERGY. 

dq = dQ/m 

dq = Tds = du dv=0   
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DEFINE SPECIFIC HEAT AT CONSTANT VOLUME 

cv = ∂q/∂T dv=0   

THUS, AT CONSTANT VOLUME 

dq dv=0   = cvdT = du dv=0   

HENCE 

cv = ∂u/∂T v   
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THE OTHER IDEAL GAS EQUATION 

IN GENERAL CV MAY VARY WITH THE STATE OF THE GAS. 

TO OBTAIN A SECOND CONSTITUTIVE EQUATION FOR THE IDEAL GAS WE FOLLOW 
COMMON PRACTICE  

—ASSUME CV IS CONSTANT.   

Integrating yields (specific) internal energy as a function of temperature alone 

u – uo = cv(T – To) 
Subscript o denotes a reference state.  
Usually, uo = 0, i.e., u = 0 when T = To. 
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GIVEN THIS RELATION BETWEEN SPECIFIC INTERNAL ENERGY AND TEMPERATURE, WE 
MAY RESTATE THE FIRST LAW AS 

cvdT = Tds – Pdv 

Rearranging 

ds = cvdT/T + Pdv/T 

USING SPECIFIC QUANTITIES THE IDEAL GAS EQUATION IS 

Pv = RT 

Substituting 

ds = cv dT/T + R dv/v 

ds = cv d ln(T) + R d ln(v) 

Integrating 

s – so = cv ln T/To + R ln v/vo 

THIS IS THE SECOND CONSTITUTIVE EQUATION FOR THE IDEAL GAS. 
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THIS EQUATION IS IN THE CAUSAL FORM ASSOCIATED WITH THE HELMHOLTZ FUNCTION, 
S := S(T,V)  

THE CORRESPONDING CAUSAL FORM FOR THE OTHER CONSTITUTIVE EQUATION IS P := 
P(T,V) 

The Helmholtz function is the co-energy corresponding to integral causality on 
the mechanical port and differential causality on the thermal port.   

C
P

- dV/dt

T

dS/dt  
CAUTION!  

Total power flow requires total entropy and volume, not specific entropy and 
volume (except in the unlikely case where we have unit mass of gas.) 

Thus one causal form of the two constitutive equations for the two-port 
capacitor model of the ideal gas is 

S := mcv ln T/To + mR ln V/Vo + So 

P := mRT/V 
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THE FORM CORRESPONDING TO INTEGRAL CAUSALITY ON BOTH PORTS REQUIRES 
PRESSURE, TEMPERATURE AND INTERNAL ENERGY AS FUNCTIONS OF ENTROPY AND 
VOLUME. 

IT COULD BE OBTAINED BY MANIPULATING S = S(T,V) ABOVE INTO THE FORM T = T(S,V), 
SUBSTITUTING TO FIND P = P(S,V) AND INTEGRATING TO FIND U = U(S,V). 

IT MAY ALSO BE FOUND AS FOLLOWS, STARTING FROM THE FIRST LAW. 

du = Tds – Pdv 

ASSUME CV IS CONSTANT AND USE THE IDEAL GAS EQUATION. 

cvdT = Tds – (RT/v)dv 
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REARRANGE WITH ENTROPY AND VOLUME ON THE “INPUT” SIDE. 

dT
T   = 

ds
cv

  – 
R
cv

 
dv
v   

d ln(T) = 
ds
cv

  – 
R
cv

  d ln(v) 

Integrate 

ln
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞T

To
  = 

s – so
cv

  – 
R
cv

  ln
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞v

vo
  

EXPONENTIATE 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞T

To
  = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞v

vo
–

R
cv  exp

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞s – so

cv
  

This is in the required form T = T(s,v). 
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TO FIND THE PRESSURE EQUATION, USE THE IDEAL GAS EQUATION 

P
Po

  = 
T
To

 
vo
v   

Substitute 
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⎟
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  = 
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⎜
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⎠
⎟
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⎟
⎞R

cv
 + 1   exp
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This is in the required form P = P(s,v). 
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TO FIND U = U(S,V) REARRANGE THE EXPRESSION FOR INTERNAL ENERGY 

u – uo = cv(T – To) 

u = cvTo
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞T

To
 – 1   + uo 

and substitute 

u = cvTo⎣⎢
⎢⎡

⎦⎥
⎥⎤

⎝
⎜
⎜
⎛

⎠
⎟
⎟
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–

R
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⎜
⎛

⎠
⎟
⎟
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cv
 – 1   + uo 
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GIVEN THE COMPLEXITY OF THESE EQUATIONS IT IS WISE TO CHECK IF THEY ARE 
CONSISTENT. 

T = s
u
∂
∂

= cvTo
⎝
⎜
⎜
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⎟
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vo
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R
cv  exp
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1
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—OK 

–P = v
u
∂
∂

= cvTo⎣⎢
⎢⎡

⎦⎥
⎥⎤

–
R
cv

 
1
vo
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substitute RTo = Povo 

P = Po
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—OK 
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WE MAY ALSO CHECK FOR SYMMETRY, I.E. THAT MAXWELL’S RECIPROCITY CONDITION IS 
SATISFIED. 

s
P
∂
∂

= Po
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Rearranging and using RTo = Povo we see that  

( )v-
T

s
P

∂
∂

=
∂
∂

 

as required. 
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WE MAY FURTHER CHECK FOR INTRINSIC STABILITY 

—compute the inverse capacitance. 

( )
( )⎥⎦

⎤
⎢
⎣

⎡
−∂∂∂∂
−∂∂∂∂

=−

VPSP
VTST

C 1
 

The off-diagonal terms were computed above. The diagonal terms are 

s
T
∂
∂
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( )= –
⎣⎢
⎢⎡

⎦⎥
⎥⎤

–
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞R

cv
 + 1  

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞v

vo
–
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞R

cv
 + 2  

1
vo

 Po exp
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞s – so

cv
  v-

P
∂
∂

Using RTo = Povo to identify factors common to all terms yields 

C-1 = 
R To
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INTRINSIC STABILITY IS ESTABLISHED IF THE DETERMINANT  OF C-1 IS POSITIVE. 

The common factor is always positive. 

The determinant is also always positive. 

R + cv
R v2   – 

1
v2  = 

cv
R v2  > 0 

THUS THE IDEAL GAS MODEL IS INTRINSICALLY STABLE 

—which makes physical sense. 
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FINALLY, REMEMBER THAT TOTAL POWER FLOW REQUIRES EQUATIONS IN TERMS OF 
TOTAL ENTROPY, VOLUME AND INTERNAL ENERGY. 

⎝
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DISCUSSION 

TWO SIMPLE EQUATIONS CHARACTERIZE THE IDEAL GAS: 

Pv = RT 

cv = constant 

THE END RESULT OF OUR TEDIOUS MANIPULATIONS SEEMS MERELY TO CONVERT THEM 
INTO THE COMPLICATED EXPRESSIONS ABOVE.   

Why bother?   

What have we gained?   

Why does it matter what causal form we use for the ideal gas equations?  
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THE DISARMING SIMPLICITY OF PV = RT HIDES AN ASSUMPTION THAT TEMPERATURE IS 
AN INPUT VARIABLE. 
The meaningful causal forms of this equation are 

P := RT/v 

v := RT/P 

This implicit assumption about the thermal boundary conditions may not 
always be applicable. 

It is not compatible with the typical situation involving work-to-heat 
transduction. 

For example, in a bicycle-pump the trapped air temperature varies in response 
to mechanical work done on the gas. 

Heat transfer occurs when trapped air temperature differs from environmental 
temperature. 

Trapped air temperature is not determined by the  environmental temperature. 
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THE FIRST REASON TO MANIPULATE THE IDEAL GAS EQUATIONS IS BECAUSE A 
COMPUTABLE STATE-DETERMINED REPRESENTATION MAY REQUIRE THESE PARTICULAR 
FORMS.   

A well-posed computational model requires equations structured so that each 
of its elements has properly-defined inputs and outputs.   

These computational constraints depend upon interactions between connected 
elements.  

They are revealed by causal analysis.   

A SECOND REASON IS THAT WE MAY GAIN INSIGHT — THE MAIN PURPOSE OF MODELING. 

For example, the van der Waals equation is another common model of simple 
gases.  

Analysis similar to the above reveals a constraint on the model parameter 
values to ensure intrinsic stability. 
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CHANGING THE BOUNDARY ON ONE PORT OF A TWO-PORT ELEMENT MAY CHANGE THE 
APPARENT BEHAVIOR ON THE OTHER PORT. 

If a compressible gas is maintained at constant volume it has a heat capacity 
characterized by cv, the specific heat at constant volume. 

If pressure is maintained constant, (specific) heat flow may change both 
(specific) internal energy and (specific) volume.  

DEFINE SPECIFIC HEAT AT CONSTANT PRESSURE 

cp = ∂q/∂T dP=0   

thus 

dq dP=0   = cpdT 
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FROM GIBBS’ RELATION 

dq = Tds = du + Pdv 

USING 

d(Pv) = Pdv + vdP  

at constant pressure d(Pv) dP=0   = Pdv 

and dq = Tds = du dP=0   + d(Pv) dP=0   = dh dP=0   

where h = u + Pv is specific enthalpy 

HENCE 

cp = ∂h/∂T P   
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USING THE IDEAL GAS EQUATION PV = RT AND ASSUMING CONSTANT PRESSURE 

Pv – Pvo = RT – RTo 

Assuming constant cv as above 

u – uo = cvT – cvTo 

Combining 

h – ho = (u + Pv) – (uo – Pvo) = cvT – cvTo + RT – RTo 

h – ho = (cv + R)(T – To) 

Thus 

cp = cv + R 
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HENCE 

cp is also constant for an ideal gas. 

enthalpy, like internal energy, depends only on temperature. 

The apparent heat capacity at constant pressure is always greater than at 
constant volume. 

THIS MAKES PHYSICAL SENSE: 

more heat is required to expand the gas against the constant pressure as well 
as raise its temperature. 
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	EXAMPLE: IDEAL GAS
	Many low-density gases at moderate pressures may be adequately modeled as ideal gases.  
	Are the ideal gas model equations compatible with models of dynamics in other domains? 

	An ideal gas is often characterized by the relation
	PV = mRT
	P: (absolute) pressure
	V: volume
	m: mass
	R: gas constant
	T: absolute temperature


	In the form
	PV = mRT

	the ideal gas equation is a relation between variables with no causal meaning.
	Used as an assignment operator relating input to output
	PV := mRT
	it would imply that both effort, P, and displacement, V, on the mechanical power port are outputs.
	That is physically meaningless.

	Similarly, the form
	T := PV/mR
	would imply that both effort, P, and displacement, V, on the mechanical power port are inputs.
	That is also physically meaningless.


	The ideal gas equation may be re-arranged into two forms that admit a meaningful causal interpretation.
	One form is compatible with the causal assignment associated with the Helmholtz function.
	the “Helmholtz form”
	P := mRT/V

	The other form is compatible with the causal assignment associated with the Gibbs function.
	the “Gibbs form”
	V := mRT/P


	AN IMPORTANT POINT
	The relation PV = mRT does not completely characterize the gas.  
	We model the interacting thermal and mechanical effects using a two-port capacitor.
	A two-port capacitor needs two constitutive equations.  

	The second is usually obtained by assuming a particular relation between internal energy and temperature.
	Common practice: 
	assume cv is constant.
	cv: specific heat at constant volume


	What’s “specific heat”?
	And how does it determine the relation between internal energy and temperature?
	“Specific” in this context means “per unit mass”.
	Extensive variables:
	All quantities that vary with the amount (or extent) of a substance (all other factors being equal) are extensive variables (or properties).
	mass
	volume
	(total) entropy
	(total) internal energy
	(total) enthalpy
	etc.

	Every extensive variable (property) has a “specific” counterpart.
	specific internal energy, u
	u = U/m
	internal energy per unit mass

	specific entropy, s
	s = S/m
	entropy per unit mass

	specific volume, v
	v = V/m
	volume per unit mass

	the inverse of density, 
	v = 1/
	(Note: “specific mass” -- mass per unit mass -- has dubious value and usually is not defined.)


	EXTENSIVE VS. INTENSIVE
	Intensive variables:
	All quantities that do not vary with the amount (or extent) of a substance (all other factors being equal) are intensive variables (or properties).
	pressure
	temperature
	chemical potential
	etc.

	Thus we do not define “specific” intensive variables.
	— “temperature per unit mass” or “pressure per unit mass” would have no particular meaning.

	The Gibbs relation (a differential form of the first law) may be written in terms of specific variables.
	dU = TdS – PdV

	per unit mass:
	du = Tds – Pdv

	If volume remains constant, (specific) heat flow changes (specific) internal energy.
	dq = dQ/m
	dq = Tds = du 

	Define specific heat at constant volume
	cv = q/T 

	Thus, at constant volume
	dq = cvdT = du 

	Hence
	cv = u/T 


	THE OTHER IDEAL GAS EQUATION
	In general cv may vary with the state of the gas.
	To obtain a second constitutive equation for the ideal gas we follow common practice 
	—assume cv is constant.  
	Integrating yields (specific) internal energy as a function of temperature alone
	u – uo = cv(T – To)
	Subscript o denotes a reference state. 
	Usually, uo = 0, i.e., u = 0 when T = To.


	Given this relation between specific internal energy and temperature, we may restate the first law as
	cvdT = Tds – Pdv
	Rearranging
	ds = cvdT/T + Pdv/T

	Using specific quantities the ideal gas equation is
	Pv = RT
	Substituting
	ds = cv dT/T + R dv/v
	ds = cv d ln(T) + R d ln(v)
	Integrating
	s – so = cv ln T/To + R ln v/vo

	This is the second constitutive equation for the ideal gas.
	This equation is in the causal form associated with the Helmholtz function, s := s(T,v) 
	The corresponding causal form for the other constitutive equation is P := P(T,v)
	The Helmholtz function is the co-energy corresponding to integral causality on the mechanical port and differential causality on the thermal port.  
	 

	Caution! 
	Total power flow requires total entropy and volume, not specific entropy and volume (except in the unlikely case where we have unit mass of gas.)
	Thus one causal form of the two constitutive equations for the two-port capacitor model of the ideal gas is
	S := mcv ln T/To + mR ln V/Vo + So
	P := mRT/V

	The form corresponding to integral causality on both ports requires pressure, temperature and internal energy as functions of entropy and volume.
	It could be obtained by manipulating S = S(T,V) above into the form T = T(S,V), substituting to find P = P(S,V) and integrating to find U = U(S,V).
	It may also be found as follows, starting from the first law.
	du = Tds – Pdv

	Assume cv is constant and use the ideal gas equation.
	cvdT = Tds – (RT/v)dv

	Rearrange with entropy and volume on the “input” side.
	 =  –  
	d ln(T) =  –  d ln(v)
	Integrate
	ln =  –  ln 

	Exponentiate
	 =  exp 
	This is in the required form T = T(s,v).

	To find the pressure equation, use the ideal gas equation
	 =  
	Substitute
	 =  exp 
	This is in the required form P = P(s,v).

	To find u = u(s,v) rearrange the expression for internal energy
	u – uo = cv(T – To)
	u = cvTo + uo
	and substitute
	u = cvTo + uo

	Given the complexity of these equations it is wise to check if they are consistent.
	T = = cvTo exp 
	—OK
	–P =  = cvTo 
	substitute RTo = Povo
	P = Po exp 
	—OK

	We may also check for symmetry, i.e. that Maxwell’s reciprocity condition is satisfied.
	 = Po exp 
	 = Toexp 
	Rearranging and using RTo = Povo we see that 
	 
	as required.

	We may further check for intrinsic stability
	—compute the inverse capacitance.
	 
	The off-diagonal terms were computed above. The diagonal terms are
	 = To exp 
	 = – 
	Using RTo = Povo to identify factors common to all terms yields
	C-1 =  exp 

	Intrinsic stability is established if the determinant  of C-1 is positive.
	The common factor is always positive.
	The determinant is also always positive.
	 –  =  > 0

	Thus the ideal gas model is intrinsically stable
	—which makes physical sense.

	Finally, remember that total power flow requires equations in terms of total entropy, volume and internal energy.
	 =  exp 
	 =  exp 
	U = mcvTo + Uo
	 


	DISCUSSION
	Two simple equations characterize the ideal gas:
	Pv = RT
	cv = constant

	The end result of our tedious manipulations seems merely to convert them into the complicated expressions above.  
	Why bother?  
	What have we gained?  
	Why does it matter what causal form we use for the ideal gas equations? 

	The disarming simplicity of Pv = RT hides an assumption that temperature is an input variable.
	P := RT/v
	v := RT/P
	This implicit assumption about the thermal boundary conditions may not always be applicable.
	It is not compatible with the typical situation involving work-to-heat transduction.

	For example, in a bicycle-pump the trapped air temperature varies in response to mechanical work done on the gas.
	Heat transfer occurs when trapped air temperature differs from environmental temperature.
	Trapped air temperature is not determined by the  environmental temperature.

	The first reason to manipulate the ideal gas equations is because a computable state-determined representation may require these particular forms.  
	A well-posed computational model requires equations structured so that each of its elements has properly-defined inputs and outputs.  
	These computational constraints depend upon interactions between connected elements. 
	They are revealed by causal analysis.  

	A second reason is that we may gain insight — the main purpose of modeling.
	For example, the van der Waals equation is another common model of simple gases. 
	Analysis similar to the above reveals a constraint on the model parameter values to ensure intrinsic stability.

	Changing the boundary on one port of a two-port element may change the apparent behavior on the other port.
	If a compressible gas is maintained at constant volume it has a heat capacity characterized by cv, the specific heat at constant volume.
	If pressure is maintained constant, (specific) heat flow may change both (specific) internal energy and (specific) volume. 

	Define specific heat at constant pressure
	cp = q/T 
	thus
	dq = cpdT

	From Gibbs’ relation
	dq = Tds = du + Pdv

	Using
	d(Pv) = Pdv + vdP 
	at constant pressure d(Pv) = Pdv
	and dq = Tds = du + d(Pv) = dh 
	where h = u + Pv is specific enthalpy

	Hence
	cp = h/T 

	Using the ideal gas equation Pv = RT and assuming constant pressure
	Pv – Pvo = RT – RTo
	Assuming constant cv as above
	u – uo = cvT – cvTo
	Combining
	h – ho = (u + Pv) – (uo – Pvo) = cvT – cvTo + RT – RTo
	h – ho = (cv + R)(T – To)
	Thus
	cp = cv + R

	Hence
	cp is also constant for an ideal gas.
	enthalpy, like internal energy, depends only on temperature.
	The apparent heat capacity at constant pressure is always greater than at constant volume.

	This makes physical sense:
	more heat is required to expand the gas against the constant pressure as well as raise its temperature.



