
NONLINEAR MECHANICAL SYSTEMS 

CANONICAL TRANSFORMATION S AND NUMERICAL 
INTEGRATION 

Jacobi Canonical Transformations 
A Jacobi canonical transformations yields a 
Hamiltonian that depends on only one of the 
conjugate variable sets. 

Assume dependence on new momentum alone. 
H(p*,q*) = K(p*) 
∂K(p*)/∂q* = 0 

Thus 
dp*/dt = e* 

dq*/dt = ∂K(p*)/∂p* – f* 


The simple relation between effort and the rate of 
change of momentum is recovered in the new 
coordinates. 
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EXAMPLE: SIMPLE HARMONIC OSCILLATOR 

Hamiltonian 

H(p,q) = 2
1
(p2/I + q2/C) 

Hamilton's equations 
dq/dt = ∂H/∂p = p/I 
dp/dt = –∂H/∂q = q/C 

Change variables from old (q,p) to new (P,Q) 
Define Zo = IC and the generating function 

S(q,Q) = Zo(q2/2) cotQ 

The transformation equations are 
p = ∂S/∂q = Zoq cotQ 

P = –∂S/∂Q = Zo(q2/2)/sin2Q 
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Express the old variables in terms of the new 
p = 2P cosQ Zo 

q = 2P sinQ (1/ Zo ) 

Define ωo = 1/IC and the new Hamiltonian is 

H(P,Q) = ωo P = K(P) 

Hamilton’s equations in the new coordinates 
dQ/dt = ∂K/∂P = ωo 
dP/dt = –∂K/∂Q = 0 

Their solution is 
Q(t) = ωo t + constant 

P(t) = constant 
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In essence this variable change has integrated the 
equations. 

As the product of P and Q has the units of action 
(energy by time) it is sometimes called a (simple 
harmonic) actional transformation. 

PHYSICAL INTERPRETATION: 

P is proportional to the total system energy. 

Its square root is proportional to oscillation amplitude. 

Q is the phase angle of the oscillations. 
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In general, finding Jacobi canonical transformations 
requires solving a non-trivial partial differential 
equation. 

A practical alternative is to separate the Hamiltonian 
into two parts, one with a known Jacobi canonical 
transform. 

H(p,q) = Hj(p,q) + Hn(p,q) 

Apply the known Jacobi canonical transformation 
H*(P,Q) = Hj*(P) + H*n(P,Q) 
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We may represent the second term as a set of canonical 
forces 

e*(P,Q) = –∂H*n/∂Q 
f*(P,Q) = –∂H*n/∂P 

The transformed equations become 
dP/dt = e*(P,Q) 
dQ/dt = ∂H*j/∂P – f*(P,Q) 

An advantage of this change of variables is that, in 
effect, it integrates the fundamental oscillatory mode 
of the solution. 
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EXAMPLE: SIMPLE PENDULUM 

For large amplitudes, the simple pendulum is a 

nonlinear oscillator. 


H(η,θ) = η2/2 + 1 – cos θ 

where 
θ angle with respect to the vertical 
η corresponding angular momentum 

Expand the cosine as a power series 

H(η,θ) = η2/2 + θ2/2 – θ4/4! + θ6/6! – ... 
The Hamiltonian is quadratic in momentum and 
displacement with additional terms in displacement 
of fourth power and higher. 
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Until the fourth power of the angle in radians 
becomes significant, 

the nonlinear pendulum may be treated as linear 
system 
with a Hamiltonian that is quadratic in momentum 
and displacement. 

For the quadratic terms have a knownJacobi canonical 
transformation: the simple harmonic actional. 

Split the Hamiltonian as follows 

H(η,θ) = η2/2 + θ2/2 + (1 – cosθ – θ2/2) 
H(η,θ) = K(η,θ) + N(η,θ) 
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Apply the simple harmonic actional 
θ = 2P sinQ 

η = 2P cosQ 
The Hamiltonian becomes 

H*(P,Q) = K*(P) + N*(P,Q) 
In the original variables, the system equations are 

dη/dt = –∂H/∂θ 

dθ/dt = ∂H/∂η 

In the new variables, the system equations become 
dP/dt = –∂N*/∂Q 
dQ/dt = 1 + ∂N*/∂P 
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Transformation does not change the value of either K 
or N. 

Use the chain rule on the original N which depends 
only on θ. 

∂N*/∂Q = (∂N/∂θ) (∂θ/∂Q) 
∂N*/∂P = (∂N/∂θ) (∂θ/∂P) 
∂N/∂θ = sinθ – θ 

The transformed equations become 
dP/dt = [ 2P sinQ – sin( 2P sinQ)][ 2P cosQ] 

dQ/dt = 1 + [sin( 2P sinQ) – 2P sinQ][sinQ (1/ 2P )] 

∂θ/∂Q = 2P cosQ 

∂θ/∂P = sinQ (1/ 2P ) 
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Use the transformation equations to express the 
rates of change as a function of both old and new 
variables. 

dP/dt = (θ – sinθ)η 

dQ/dt = 1 + (sinθ – θ)θ/2P 

θ = 2P sinQ 

η = 2P cosQ 

What have we gained? 

The system equations are simpler in the old 

variables 


dη/dt = –sinθ 

dθ/dt = η 

In the new variables, the solution is far more stable 
numerically. 
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Simple Euler integration algorithm 
starting time 0 seconds, final time 50 seconds, time 

step 0.1 seconds. 

start from rest at an angle of 0.1 radians (≈6°) 


In old coordinates, simulation is unstable. 
Total system energy grows exponentially. 

Lagrangian formulation 
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In new coodinates, the simulation is stable. 

Total system energy variation: 5.6x10-7. 


Hamilton-Jacobi formulation 
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Perform the same integration using a third-order 
fixed-step Runge-Kutta algorithm. 

Lagrangian formulation 
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Total energy, declines steadily by 2.1x10-5 over 50 

seconds. 
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Hamilton-Jacobi formulation 
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Total energy also decreases, but by 2.3x10-10 — a 
hundred thousand time less. 
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Start the pendulum from rest at 1 radian (≈57°) and use 
the same integration algorithm and parameters 
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Again, the transformed equations produce a smaller 
decline in energy, though the difference is less 
pronounced — 8.8x10-4 vs. 1.5x10-4. 
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Start from rest at 5° off vertically upright (3.05 radians) 
and use the same integration algorithm and parameters 

Lagrangian formulation 
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Now the original formulation is unstable — energy 
increases by 1.3x10-3 in 50 seconds. The transformed 
equations yield a decline of energy of 3.1x10-3. 
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Start from the same initial conditions but use MATLAB’s 
ode23, a 3rd-order adaptive Runge-Kutta algorithm with 
error tolerance of 1.0x10-3 
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Now the steady increase in computed total energy in the 
original formulation results in a major departure of the 
computed angle from what it should be 
— the simulation claims that after one oscillation the 
pendulum will spin continuously in one direction. 
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Hamilton-Jacobi formulation 
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The transformed equations do not exhibit this behavior, 
though the computed energy declines substantially 
(9.3x10-2 in 50 seconds). 
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POINTS: 

• Never believe anything you get from a computer. 
Find some way of cross checking the results. One 
effective method is to compute a known invariant, in 
this case energy. 

• The equations in the original variables may look 
simpler, but that is deceptive. In fact the transformed 
equations have been partially integrated by the 
transformation and so present a less demanding task 
to the integration algorithm. 

• A little analysis up front can have a dramatic effect 
on the accuracy of numerical computations. 
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