
Ideal asymmetric junction elements 

Relax the symmetry assumption and examine the resulting junction structure. For 
simplicity, consider two-port junction elements.   

As before, assume instantaneous power transmission between the ports without 
storage or dissipation of energy.  Characterize the power flow in and out of a two-
port junction structure using four real-valued wave-scattering variables.  Using 
vector notation:  

u = 
⎣
⎢
⎡

⎦
⎥
⎤u1

u2
  (A.1) 

v = 
⎣
⎢
⎡

⎦
⎥
⎤v1

v2
  (A.2) 

The input and output power flows are the square of the length of these vectors, 
their inner products.   

Pin = ∑
i=1

2
ui2  = utu (A.3) 

Pout = ∑
i=1

2
vi2  = vtv (A.4) 

The constitutive equations of the junction structure may be written as follows. 

v = f(u) (A.5) 

Geometrically, the requirement that power in equal power out means that the 
length of the vector v must equal the length of the vector u, i.e. their tips must lie 
on the perimeter of a circle (see figure A.1).   

For any two particular values of u and v, the algebraic relation f(.) is equivalent to 
a rotation operator. 

v = S(u) u (A.6) 

where the square matrix S is known as a scattering matrix.   
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S need not be a constant matrix, but may in general depend on the power flux 
through the junction, hence the notation S(u).  However, S is subject to important 
restrictions.  In particular,  

vtv = utStSu = utu (A.7) 

S is an orthogonal matrix: the vectors formed by each of its rows (or columns) are 
(i) orthogonal and (ii) have unit magnitude; its transpose is its inverse. 

StS = 1 (A.8) 

This constrains the coefficients of the scattering matrix as follows. 

S = ⎣⎢
⎡

⎦
⎥
⎤a b

c d   (A.9) 

a2 + c2 = 1 (A.10) 

ab + cd = 0 (A.11) 

b2 + d2 = 1 (A.12) 
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As there are only three independent equations and four unknown quantities, we see 
that this junction is characterized by a single parameter.  We may also write the 
orthogonality condition as 

SSt = 1 (A.13) 

which yields the following equations. 

a2 + b2 = 1 (A.14) 

ac + bd = 0 (A.15) 

c2 + d2 = 1 (A.16) 

There are four possible solutions to these equations.  Combining A.10 and A.16,  

a2 = 1 - c2 = d2.  Thus a = ± d.   

If a = d then b =c = ± 1 - a2 .   

One solution 

Choosing the positive root yields one solution.  Assuming the coefficient a to be 
the undetermined parameter, 

S = 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤a 1 - a2

- 1 - a2 a
  (A.17) 

Rewrite in terms of effort and flow variables.   

e = 
⎣
⎢
⎡

⎦
⎥
⎤e1

e2
  (A.18) 

f = 
⎣
⎢
⎡

⎦
⎥
⎤f1

f2
  (A.19) 

The relation between efforts and wave-scattering variables is as follows. 

e = (u - v) c = c (1 - S) u (A.20) 

where c is a scaling constant.  The relation between flows and wave-scattering 
variables is as follows. 
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f = (u + v)/c = 1/c (1 + S) u (A.21) 

If |a| ≠ 1 then 1 + S and 1 - S are nonsingular matrices and the input wave 
scattering variables u1 and u2 may be eliminated as follows. 

e = c2 (1 - S) (1 + S)-1 f (A.22) 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤e1

e2
  = c2 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤0 - (1 - a)/(1 + a)

(1 - a)/(1 + a) 0 ⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤f1

f2

  (A.23) 

Writing G = c2 (1 - a)/(1 + a)   we obtain the equation for an ideal gyrator. 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤e1

e2
  = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤0 -G

G 0 ⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤f1

f2
  (A.24) 

Note that equations A.20 and A.21 imply a sign convention in effort-flow 
coordinates such that power is positive inwards on both ports. 

Pnet inwards = etf = utu - vtv (A.25) 

To follow the more common sign convention we may simply change the sign of f2 
in equation A.24. 

If a = 1, e is identically zero for all values of f.  No energy is exchanged between 
the ports and the junction structure behaves like a dissipator with zero resistance.   

If a = -1, f is identically zero for all values of e.  No energy is exchanged between 
the ports and the junction structure behaves like a dissipator with infinite resistance 
(zero conductance). 
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A second solution 

Choosing a = d and using the negative root yields another solution.  Again 
assuming the coefficient a to be the undetermined parameter, 

S = 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤a - 1 - a2

1 - a2 a
  (A.26) 

In this case the relation between efforts and flows is 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤e1

e2
  = c2 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤0 (1 - a)/(1 + a)

- (1 - a)/(1 + a) 0 ⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤f1

f2

  (A.27) 

Again we obtain the equation for an ideal gyrator. 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤e1

e2
  = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤0 G

-G 0 ⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤f1

f2
  (A.28) 
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A third solution 

If a = - d, b = c = ± 1 - a2 .  Using the positive root and assuming a to be the 
undetermined parameter 

S = 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤a 1 - a2

1 - a2 -a
  (A.29) 

In this case the matrices 1 + S and 1 - S are singular for all values of the parameter 
a.   

However, equations A.20 and A.21 may be combined as follows: 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤e1/c

e2/c

cf1

cf2

  = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤1 - S

-----

1 + S
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤u1

u2
  (A.30) 

⎣
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎤e1/c

e2/c

cf1

cf2

  = 

⎣
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎤1 - a - 1 - a2

- 1 - a2 1 + a

1 + a 1 - a2

1 - a2  1 - a

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤u1

u2
  (A.31) 

If |a| ≠ 1, the 4 x 2 matrix relating efforts and flows to the input scattering variables 
contains two nonsingular 2 x 2 submatrices.   

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤e2/c

cf1
  = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤- 1 - a2 1 + a

1 + a 1 - a2 ⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤u1

u2
  (A.32) 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤e1/c

cf2
  = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤1 - a - 1 - a2

1 - a2 1 - a ⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤u1

u2
  (A.33) 

Solving the second of these for u and substituting into the first we obtain a relation 
between efforts and flows. 
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⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤e2

f1
  = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤- (1 + a)/(1 - a) 0

0 (1 + a)/(1 - a) ⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤e1

f2
  (A.34) 

Writing T = (1 + a)/(1 - a)  we obtain the equation for an ideal transformer. 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤e2

f1
  = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤-T 0

0 T ⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤e1

f2
  (A.35) 

To follow the more common sign convention we may change the sign of e2. 

If the parameter a = ± 1, an argument similar to that used above shows that a 
degenerate case results in which no energy is exchanged between the ports. 
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Final solution 

Choosing a = d and using the negative root we obtain the fourth solution. 

S = 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤a - 1 - a2

- 1 - a2 -a
  (A.36) 

Once again, the matrices 1 + S and 1 - S are singular for all values of the parameter 
a, but by rearranging equations A.20 and A.21 as before the corresponding relation 
between efforts and flows is 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤e2

f1
  = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤(1 + a)/(1 - a) 0

0 - (1 + a)/(1 - a) ⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤e1

f2
  (A.37) 

Again we obtain the equation for an ideal transformer 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤e2

f1
  = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤T 0

0 -T ⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤e1

f2
  (A.38) 
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Two-port junction elements 

There are only two possible power-continuous, asymmetric two-port junction 
elements, the gyrator and the transformer.   

Unlike the ideal symmetric junction elements (0 and 1) the ideal asymmetric 
junction elements may be nonlinear. 

The relation between efforts and flows must have a multiplicative form. 

The general asymmetric junction elements are a modulated gyrator (MGY) and a 
modulated transformer (MTF) respectively. 
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