
2.141 Modeling and Simulation of Dynamic Systems 

Assignment #4 
Out: Wednesday October 25, 2006 
Due: Monday November 6, 2006 

Problem 1 
A bead of mass m is attached to the center of a wire of length 2L which is rigidly 

restrained at its ends. The wire has longitudinal elastic stiffness k and pre-tension T0 (the 
tension in the wire when it is perfectly straight).  

1. Develop a model competent to describe horizontal-plane transverse vibration of 
the mass and represent it as a bond graph.  

2. Derive (nonlinear) equations of motion.  
3. Linearize them about the rest configuration (when the wire is perfectly straight) 

and find an algebraic expression for the undamped frequency of oscillation. 
4. How much does the elastic stiffness of the wire affect the frequency? 

Problem 2 
Motivation: Control through Singularities  

A common form of robot motion control specifies a workspace position or 
trajectory (e.g., a desired time-course of tool position in Cartesian coordinates) and 
transforms that specification to a corresponding configuration-space position or trajectory 
(e.g., a time-course of joint angles). However, most robot mechanisms have kinematic 
singularities, configurations at which the relation between workspace and configuration-
space becomes ill-defined. As a result, most robot motion controllers do not operate at or 
near these singular points. In contrast, humans frequently operate their limbs at or near 
“singular” configurations. (For example, think about your leg posture when you are 
standing). 

An energy-based analysis of mechanics shows that the transformation of positions 
and velocities is well-defined in one direction while the transformation of efforts and 
momenta is well-defined in the other. A controller that takes advantage of these facts 
should be able to operate at and close to mechanism singularities. A “simple” impedance 
controller attempts to impose the workspace behavior of a damped spring connected to a 
movable “virtual position”.  
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where θ is a vector of generalized coordinates, τ a vector of (conjugate) generalized 
efforts, x and xo are vectors of actual and virtual Cartesian tip coordinates, L(⋅) and J(⋅) 
are linkage kinematic equations and Jacobian respectively, and K and B are stiffness and 
damping respectively.  

Note that this controller does not require the inverse of the kinematic equations 
nor the Jacobian. In this problem you are to test how well works near and close to 
mechanism singularities. 

Assume a planar serial-link (open-chain) mechanism with two links of equal 
length L = 0.5 m, operating in the horizontal plane (i.e., ignore gravity) and driven by 



ideal controllable-torque actuators, one driving the inner (“shoulder”) link relative to 
ground, the other driving the outer (“elbow”) link relative to the inner link. Sensors 
mounted co-axially with the actuators provide measurements of joint angle and angular 
velocity. 

1. Kinematics 
a) Choose generalized coordinates (carefully!) and write kinematic equations 

relating them to the position coordinates of the tip, expressed in a Cartesian 
coordinate frame with its origin at the axis connecting the inner (“shoulder”) link 
to ground. 

b) Find the corresponding Jacobian (to relate generalized velocities to tip Cartesian 
velocities). 

c) Identify the set of singular configurations for this linkage (at which the relation 
between tip Cartesian coordinates and joint angles becomes ill-defined) and show 
that they include the center of the workspace as well as at the limits of reach. 

2. Dynamics 
a) Formulate a dynamic model of the mechanism relating input actuator torques to 

output motion of the tip in Cartesian coordinates. Assume the links are rods of 
uniform cross section and mass m = 0.5 kg and that the joints are frictionless. 
(Hint: be careful in your choice of generalized coordinates and be sure you have 
correctly identified generalized forces.) 

3. Controller 
a) Assume a simple impedance controller with uniform tip stiffness and damping 

(i.e., the stiffness and damping matrices have the form:  and 

 where k and b are constants). Choose the stiffness and damping 

values so that when the mechanism is making small motions about a configuration 
with the inner link aligned along the Cartesian x-axis and the outer link aligned 
parallel to the Cartesian y-axis, the highest-bandwidth transfer function between 
virtual and actual position has critically-damped poles with an undamped natural 
frequency of 2 Hz. (Hint: it may be easiest to first transform the stiffness and 
damping to generalized coordinates.) 
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4. Simulation 
Simulate the response to the following virtual trajectories and plot at least the path of the 
tip in Cartesian coordinates: 

a) Starting from rest at {x = L, y = 0} ending at rest at {x = 2L, y = 0}; trapezoidal 
speed profile with acceleration to peak speed in 250 ms, constant speed for 1.5 sec 
and deceleration to rest in 250 ms. 

b) Starting from rest at {x = -L, y = 0} ending at rest at {x = L, y = 0}; trapezoidal 
speed profile with acceleration to peak speed in 250 ms, constant speed for 1.5 sec 
and deceleration to rest in 250 ms. 



c) Starting from rest at {x = -L, y = L/20} ending at rest at {x = L, y = L/10}; 
trapezoidal speed profile with acceleration to peak speed in 250 ms, constant 
speed for 1.5 sec and deceleration to rest in 250 ms. 

d) Repeat the last simulation ({x = -L, y = L/20} to {x = L, y = L/10}) with k and b 
chosen so that the highest-bandwidth transfer function between virtual and actual 
position has critically-damped poles with an undamped natural frequency of 20 
Hz.. 

Comment briefly on whether and how well this controller operates near mechanism 
singularities. 
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