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Models of Mechanical Systems: Lagrangian Variables 

For (sub)system models of phenomena in the domain of mechanical translation or rotation, 
neither power variables nor energy variables are necessarily the best choice. Mechanical inertias 
have linear constitutive equations (except at speeds approaching light speed — a rare occurence 
for systems of interest to a practicing engineer).  Thus it is convenient to work with flows 
(speeds) of independent inertias as state variables. On the other hand, mechanical capacitors — 
elastic elements — frequently have nonlinear constitutive equations.  Even in the linear case, 
rather than work with efforts, it is generally easier to identify displacements and relate their time 
derivatives to the speeds of associated inertias. For mechanical systems the most convenient 
state variables are the flows of independent inertias and the corresponding displacements — 
which may be termed Lagrangian state variables.  An obvious hybrid of the above two 
procedures can be used to derive state equations. It is illustrated by the following simple 
example. 

Example: Linear Mechanical System 
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Figure 6.2a 

A mechanical system schematic is shown in figure 6.2a.  This schematic represents a model of 
the system and specifies the lumped-parameter energetic elements to be used.  A corresponding 
bond graph is shown in figure 6.2b. It is evident that a single displacement or speed is common 
to the leftmost spring and inertia which are therefore connected by a one junction.  Similarly, a 
single displacement or speed is common to the rightmost inertia and the source of the applied 
force which are therefore also connected by a one junction. The force in the remaining spring is 
applied to both inertias and a zero junction connects these three elements as shown.  Note that a 
sign convention is chosen so that the displacement of the rightmost spring is determined by the 
difference of the displacements of the two inertias. 
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Figure 6.2b 

Assume all elements have linear constitutive equations.  Causality is assigned following the 
procedure described above with the result shown in figure 6.2c. 
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Figure 6.2c 

From the causal graph, all energy storage elements are independent.  Choose as state variables 
the speeds of the two inertias, v1 and v2, and the corresponding displacements, x1 and x2, shown 
in figure 6.2a. The first two state equations are: 

d 
dt  x1 = v1 (6.25) 

d 
dt  x2 = v2 (6.26) 

Subscripting variables in an obvious way, from the constitutive equations of the inertias we may 
write: 

d F1 
dt  v1 = (6.27)m1


d F2

dt  v2 = (6.28)m2 

Reading from the causal graph, the force on the leftmost inertia is determined by the two springs. 

F1 = Fk2 – Fk1 (6.29) 

The constitutive equations of the springs relate these forces to the corresponding displacements. 

Fk1 = k1x1 (6.30) 

Fk2 = k2∆x2 (6.31) 

The displacement of the rightmost spring may be related to the positions of the inertias by 
reading directly from the causal graph. 



Integrated Modeling of Physical System Dynamics 
© Neville Hogan 1994 page 3 

∆x2 = x2 – x1 (6.32) 

Substituting yields a third state equation. 

d 1 
dt  v1 = m1 [k2(x2 – x1) – k1x1] (6.33) 

Reading from the causal graph, the force on the rightmost inertia is determined by the associated 
spring and the applied force. 

F2 = F – Fk2 (6.34) 

Substituting the constitutive equation of the spring yields the fourth state equation. 

d 1 
dt  v2 = m2 [F – k2(x2 – x1)] (6.35) 

The state equations may be written in standard vector/matrix form as follows. 
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