The Basic Bond Graph Primitives Fundamental quantities and relations

P: power e: effor	t f:flow	P = e f	E: energ	У
p: momentum $e = dp/dt$ q: displacement $f = dq/dt$		$\mathbf{E} = \int \mathbf{e} \mathrm{d}\mathbf{q} = \int \mathbf{f} \mathrm{d}\mathbf{p}$		
Bond Graph Symbol	Denotes	Electrical Netwo	rk Icon	Typical M echanical Icon
power port or bond				
optional variable labels e f half arrow denotes direction of positive power flow	energetic interaction between (sub)system s	im plicit		im plicit
(generalized) capacitor C \frown effort = $\Phi(displacement)$	(generalized) potential energy storage	electrical capacity \downarrow \downarrow \downarrow \downarrow volts = $\Phi(chargonic ideal, linear capacity e = q/C$	ge)	mechanical spring force = Φ(displacement) ideal, linear spring: F = k x
potential energy = E _p (displacement)		$\mathbf{E}_{\mathrm{p}} = \mathrm{q}^{2}/2\mathrm{C}$		$E_p = k x^2/2$

Bond Graph Symbol	Denotes	Electrical Network Icon	Typical M echanical Icon
(generalized) inertia I	(generalized) potential energy	electrical inductor	translational inertia m
$flow = \Psi(momentum)$	storage	$current = \Psi(flux linkage)$	velocity = $\Psi(m \circ m \circ n tu m)$
		ideal, linear inductor:	ideal, linear spring:
		$i = \lambda/L$	v = p/m
kinetic energy = E _k (momentum)		$E_k = \lambda^2/2L$	$E_k = v^2/2m$

Bond Graph Symbol

common effort

parallel connection

number of ports is unrestricted

zero junction

connection

$$e_i = e_j, \forall i, j$$

continuity
equation
 $\sum_i \sigma_i f_i = 0$
i

im plicit in diagram

am biguous

 $\sigma_i = 1$ if half-arrow inwards, -1 if half-arrow outwards

 $\sum \sigma_i e_i f_i = 0$

one junction

i

com m on

series connection

number of ports is unrestricted

net power in is zero:

$$\sum_{i} \sigma_{i} e_{i} f_{i} = 0$$

flow connection f_i = f_j, ∀i,j

im plicit in diagram

am biguous

transform er

$$\begin{array}{c} \begin{array}{c} e_1 \\ \hline f_1 \end{array} TF \begin{array}{c} e_2 \\ \hline f_2 \end{array} \begin{array}{c} powe \\ continue \\ e_1 = T \\ e_2 \end{array} \begin{array}{c} e_1 = T \\ f_2 \end{array} \begin{array}{c} e_1 \\ e_1 = T \\ f_2 \end{array} \begin{array}{c} e_1 \\ e_1 \end{array} \begin{array}{c} e_1 \end{array} \begin{array}{c} e_1 \\ e_1 \end{array} \begin{array}{c} e_1 \end{array} \begin{array}{c} e_1 \\ e_1 \end{array} \begin{array}{c} e_1 \end{array} \end{array} \begin{array}{c} e_1 \end{array} \begin{array}{c} e_1 \end{array} \begin{array}{c} e_1 \end{array} \end{array} \begin{array}{c} e_1 \end{array} \begin{array}{c} e_1 \end{array} \begin{array}{c} e_1 \end{array} \end{array}$$
 \end{array}

electrical transform er

mechanical lever

power in = power out

$$\mathbf{e}_1\mathbf{f}_1 = \mathbf{e}_2\mathbf{f}_2$$

power in = power out

$$\mathbf{e}_1\mathbf{f}_1 = \mathbf{e}_2\mathbf{f}_2$$

Ambiguity of Series and Parallel for Mechanical Systems

Electrical elements in parallel have the same voltage. Electrical elements in series have the same current.

A: These two springs are apparently in parallel.

- Though A & B are visually different, in both cases knowing the displacement of one spring determines the displacement of the other.
- B: These two springs are apparently in series.

Though A & C are visually similar, the relation between spring displacements is different: in C the displacements are independent.

Though B & D are visually similar, the relation between spring displacements is different: in D the displacements are independent.

Though C & D are visually different, in both cases the displacement of one spring is independent of the other.

D: These two springs are apparently in series.

C: These two springs are apparently in parallel.

Some Bond Graph Embellishments

Parameters of ideal linear1/k : Cideal, linearelements may be written adjacent1/k : Cmechanicalto the element symbol.springideal, linearL : Iideal, linearelectrical

inductor

Their common variables may be written adjacent to zero- or onejunctions.

Variables of source elements may be written adjacent to the element symbol.

A line with a full arrowhead may denote "signal" transmission (without power exchange).

USE SPARINGLY AND CAREFULLY!