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22.1 Vectors 

22.1.1 Definition 

A vector has a dual definition: It is a segment of a a line with direction, or it consists of its 
projection on a reference system 0xyz, usually orthogonal and right handed. The first form 
is independent of any reference system, whereas the second (in terms of its components) 
depends directly on the coordinate system. Here we use the second notation, i.e., x is meant 
as a column vector, whose components are found as projections of an (invariant) directed

segment on a specific reference system.

We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction.

For example, in three-space, we write a vector in terms of its components with respect to a

reference system as


⎡ 
⎧⎢ 

⎤ 
⎧⎥ 2

1
γa = . 

⎧⎣ ⎧⎨7


The elements of a vector have a graphical interpretation, which is particularly easy to see in 
two or three dimensions. 
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1. Vector addition: 

γa + γb = γc 

⎡ 
⎧⎢ 2


⎡ 
⎧⎢ 

⎤ 
⎧⎥ 3


⎡ 
⎧⎢ 

⎤ 
⎧⎥ 5


⎤ 
⎧⎥ 

1 + 3 = 4 .

⎧⎣ 7


⎧⎣⎧⎨ 2

⎧⎣⎧⎨ 9


⎧⎨ 

Graphically, addition is stringing the vectors together head to tail. 

2. Scalar multiplication: 

⎡ 
⎧⎢ 

⎡ 
⎧⎢ 

⎤ 
⎧⎥ 

⎤ 
⎧⎥ 2 −4 

−2 × 1 = −2 . 
⎧⎣ ⎧⎣⎧⎨ ⎧⎨7 −14 

22.1.2 Vector Magnitude 

The total length of a vector of dimension m, its Euclidean norm, is given by 

m ⎫ 
⎦
�
�
� 2||γx|| = xi . 
i=1 

This scalar is commonly used to normalize a vector to length one. 

22.1.3 Vector Dot or Inner Product 

The dot product of two vectors is a scalar equal to the sum of the products of the corre
sponding components: 

m ⎫ 
x γ y =γ y = γx T γ· xiyi. 

i=1 

The dot product also satisfies 

γx γ· y = y|| cos χ, ||γx||||γ

where χ is the angle between the vectors. 
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22.1.4 Vector Cross Product 

x and γy is another vector γz, γ yThe cross product of two three-dimensional vectors γ x × γ = γz, 
whose 

1. direction is normal to the plane formed by the other two vectors, 

2. direction is given by the right-hand rule, rotating from γx to γy, 

3. magnitude is the	 area of the parallelogram formed by the two vectors – the cross 
product of two parallel vectors is zero – and 

4. (signed) magnitude is equal to ||γ y|| sin χ, where χ is the angle between the two x||||γ
vectors, measured from γx to γy. 

In terms of their components, 

⎡ 
⎧⎧⎢ 

⎤ 
⎧⎧⎥ 

γx × γy =

ˆ ˆî j k 

x1 x2 x3 
y1 y2 y3 

=

(x2y3 − x3y2)̂i 

j 
(x1y2 − x2y1)ˆ
(x3y1 − x1y3)ˆ

k 
.


⎧⎧⎣ 
⎧⎧⎨ 

22.2 Matrices 

22.2.1 Definition 

A matrix, or array, is equivalent to a set of column vectors of the same dimension, arranged 
side by side, say 

⎭

2 3 
A = [γa γb
]
=
⎛⎝ 1 3
⎞⎠ . 

7	 2 

This matrix has three rows (m = 3) and two columns (n = 2); a vector is a special case of a 
matrix with one column. Matrices, like vectors, permit addition and scalar multiplication. 
We usually use an upper-case symbol to denote a matrix. 

22.2.2 Multiplying a Vector by a Matrix 

If Aij denotes the element of matrix A in the i’th row and the j’th column, then the multi
plication γc = Aγv is constructed as: 

n ⎫ 
ci = Ai1v1 + Ai2v2 + + Ainvn· · · = Aij vj , 

j=1 

where n is the number of columns in A. γc will have as many rows as A has rows (m). Note 
that this multiplication is defined only if γv has as many rows as A has columns; they have 
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consistent inner dimension n. The product γvA would be well-posed only if A had one row, 
and the proper number of columns. There is another important interpretation of this vector 
multiplication: Let the subscript : indicate all rows, so that each A:j is the j’th column 
vector. Then 

γc = Aγv = A:1v1 + A:2v2 + + A:nvn.· · ·
We are multiplying column vectors of A by the scalar elements of γv. 

22.2.3 Multiplying a Matrix by a Matrix 

The multiplication C = AB is equivalent to a side-by-side arrangement of column vectors 
C:j = AB:j , so that 

C = AB = [AB:1 AB:2 AB:k],· · · 

where k is the number of columns in matrix B. The same inner dimension condition applies 
as noted above: the number of columns in A must equal the number of rows in B. Matrix 
multiplication is: 

1. Associative. (AB)C = A(BC). 

2. Distributive. A(B + C) = AB + AC, (B + C)A = BA + CA. 

3. NOT Commutative. AB = BA, except in special cases. ≥

22.2.4 Common Matrices 

Identity. The identity matrix is usually denoted I, and comprises a square matrix with 
ones on the diagonal, and zeros elsewhere, e.g., 

⎭

1 0 0

0 1 0
⎛

⎝ 
⎞
⎠I3 = ×3 . 

0 0 1 

The identity always satisfies AIn×n A = A.= Im×m

Diagonal Matrices. A diagonal matrix is square, and has all zeros off the diagonal. For 
instance, the following is a diagonal matrix: 

⎭

4 0 0

⎛
⎝ 

⎞
⎠A =
 0 −2 0


0

. 

0 3 

The product of a diagonal matrix with another diagonal matrix is diagonal, and in this case 
the operation is commutative. 
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22.2.5 Transpose 

The transpose of a vector or matrix, indicated by a T superscript results from simply swap
ping the row-column indices of each entry; it is equivalent to “flipping” the vector or matrix 
around the diagonal line. For example, 

⎡ 
⎧⎢ 1


⎤ 
⎧⎥ 

a−∀ γ T = { 1 2 3}γa = 2

⎧⎣ 3


⎧⎨ 

⎬ 
⎭

1 2

1 4 8
⎞

⎠ −∀ ATA =
 ⎛⎝ 4 5 = . 
2 5 9 

8 9 

A very useful property of the transpose is 

(AB)T = BT AT . 

22.2.6 Determinant 

The determinant of a square matrix A is a scalar equal to the volume of the parallelepiped 
enclosed by the constituent vectors. The two-dimensional case is particularly easy to re
member, and illustrates the principle of volume: 

det(A) = A11A22 − A21A12 
�⎬ ��

1 − 1 
det = 1 + 1 = 2. 

1 1 

1-1 

A:2 A:1 

Area = det(A) = 2 

y 

x 

In higher dimensions, the determinant is more complicated to compute. The general formula 
allows one to pick a row k, perhaps the one containing the most zeros, and apply 

det(A) =

j=n 
⎫ 

j=1 

Akj(− 1)k+j�kj , 

where �kj is the determinant of the sub-matrix formed by neglecting the k’th row and the 
j’th column. The formula is symmetric, in the sense that one could also target the k’th 
column: 
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det(A) =

j=n 
⎫ 

j=1 

Ajk(−1)k+j �jk . 

If the determinant of a matrix is zero, then the matrix is said to be singular – there is no 
volume, and this results from the fact that the constituent vectors do not span the matrix 
dimension. For instance, in two dimensions, a singular matrix has the vectors colinear; in 
three dimensions, a singular matrix has all its vectors lying in a (two-dimensional) plane. 
Note also that det(A) = det(AT ). If det(A) = 0, then the matrix is said to be nonsingular. ≥

22.2.7 Inverse 

The inverse of a square matrix A, denoted A−1, satisfies AA−1 = A−1A = I. Its computation 
requires the determinant above, and the following definition of the n × n adjoint matrix: 

T⎭
(−1)1+1�11 (−1)1+n�1n· · · 
· · · · · · · · · 

(−1)n+1�n1 (−1)n+n�nn.· · · 
⎛
⎝ 

⎞
⎠adj(A) = . 

Once this computation is made, the inverse follows from 

A−1 = 
adj(A) 

. 
det(A) 

If A is singular, i.e., det(A) = 0, then the inverse does not exist. The inverse finds common 
application in solving systems of linear equations such as 

Aγx = γ x = A−1γb. b −∀ γ

22.2.8 Trace 

The trace of a square matrix is the sum of the diagonals: 

n ⎫ 
tr(A) =
 Aii. 

i=1 

22.2.9 Eigenvalues and Eigenvectors 

A typical eigenvalue problem is stated as 

Aγx = ηγx, 
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where A is an n × n matrix, γx is a column vector with n elements, and η is a scalar. We ask 
for what nonzero vectors γx (right eigenvectors), and scalars η (eigenvalues) will the equation 
be satisfied. Since the above is equivalent to (A − ηI)γx = γ0, it is clear that det(A − ηI) = 0. 
This observation leads to the solutions for η; here is an example for the two-dimensional 
case: 

⎬ �

4 − 5 
A = 

2 − 3 
−∀ 

⎬	 � 

A − ηI =
4 − η − 5 
2 − 3 − η 

−∀ 

det(A − ηI)	 = (4 − η)(− 3 − η) + 10 

= η2 − η − 2 

= (η + 1)(η − 2). 

Thus, A has two eigenvalues, η1 = − 1 and η2 = 2. Each is associated with a right eigenvector 
γx. In this example, 

(A − η1I)γx1 = γ
⎬ � 

0 −∀ 

5 − 5 
γx1 = γ

2 − 2
0 −∀ 

�T 
γx1 = 

�≈ 
2/2, 

≈ 
2/2 

(A − η2I)γx2 = γ
⎬ � 

0 −∀ 

2 − 5 
γx2 = γ

2 − 5
0 −∀ 

�	 �T 
γx2 = 5

≈ 
29/29, 2

≈ 
29/29 . 

Eigenvectors are defined only within an arbitrary constant, i.e., if γx is an eigenvector then cγx 
is also an eigenvector for any c = 0. They are often normalized to have unity magnitude, and ≥
positive first element (as above). The condition that rank(A − ηiI) = rank(A) − 1 indicates 
that there is only one eigenvector for the eigenvalue ηi; more precisely, a unique direction 
for the eigenvector, since the magnitude can be arbitrary. If the left-hand side rank is less 
than this, then there are multiple eigenvectors that go with ηi. 
The above discussion relates only the right eigenvectors, generated from the equation Aγx = 

y yηγx. Left eigenvectors, defined as γT A = ηγT , are also useful for many problems, and can 
be defined simply as the right eigenvectors of AT . A and AT share the same eigenvalues η, 
since they share the same determinant. Example: 

γy1 =(AT − η1I)γ 0 −∀ 
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⎬

5 2 
γ γy1 = 0 −∀ − 5 − 2 

�T 
2
≈ 
29/29, − 5

≈ 
29/29γy1 = 

γy2 =(AT − η2I)γ 0 −∀ 
⎬

2 2 
γ γy2 = 0 −∀ 

�T 
γy2 = 

�≈ 
2/2, −

≈ 
2/2 . 

− 5 − 5 

22.2.10 Modal Decomposition 

For simplicity, we consider matrices that have unique eigenvectors for each eigenvalue. The 
right and left eigenvectors corresponding to a particular eigenvalue η can be defined to have 
unity dot product, that is γT γyi = 1, with the normalization noted above. The dot products xi 
of a left eigenvector with the right eigenvectors corresponding to different eigenvalues are 
zero. Thus, if the set of right and left eigenvectors, V and W , respectively, is 

V = [γ γxn] , and x1 · · · 
W = [γ yn] ,y1 · · · γ

then we have 

W T V = I, or 

W T = V −1 . 

Next, construct a diagonal matrix containing the eigenvalues: 

⎭

η1 0 
Φ = ⎛⎝ 

⎞
⎠ ;· 

0 ηn 

it follows that 

AV = V Φ −∀ 

A = V ΦW T 

n ⎫
ηiγ w T vi γ= i . 

i=1 

Hence A can be written as a sum of modal components.2 

2By carrying out successive multiplications, it can be shown that Ak has its eigenvalues at �k
i , and keeps 

the same eigenvectors as A. 



� 
� 

� 

� 

118 22 APPENDIX 1: MATH FACTS 

22.2.11 Singular Value 

Let G be an m×n real or complex matrix. The singular value decomposition (SVD) computes 
three matrices satisfying 

G = U ΓV �, 

where U is m×m, Γ is m×n, and V is n×n. The star notation indicates a complex-conjugate 
transpose (the Hermitian of the matrix). The matrix Γ has the form 

⎭

θ1 0 0⎬

Γ1 0 ⎛
⎝ 

⎞
⎠Γ = , where Γ1 =
 0 0 ,·

0 0 
0 0 θp 

and p = min(m, n). Each nonzero entry on the diagonal of matrix Γ1 is a real, positive 
singular value, ordered such that θ1 > θ2 > θp. Each θ2 is an eigenvalue of GH G (or· · · i 

X

GGH ). The notation is common that θ1 = θ, the maximum singular value, and θp = θ, 
the minimum singular value. The auxiliary matrices U and V are unitary, i.e., they satisfy 
� = X−1 . They are defined explicitly: U is the matrix of right eigenvectors of GGH , and 

V is the matrix of right eigenvectors of GH G. Like eigenvalues, the singular values of G 
are related to projections. θi represents the Euclidean size of the matrix G along the i’th 
singular vector: 

θ = max||x||=1||Gx||
θ = min||x||=1||Gx||. 

Other properties of the singular value include: 

• θ(AB) √ θ(A)θ(B). 

• θ(A) = ηmax(A�A). 

• θ(A) = ηmin(A�A). 

θ(A) = 1/θ(A−1).• 

θ(A) = 1/θ(A−1).• 

22.3 Laplace Transform 

22.3.1 Definition 

The Laplace transform projects time-domain signals into a complex frequency-domain equiv
alent. The signal y(t) has transform Y (s) defined as follows: 
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� √ 
y(φ )e−sφY (s) = L(y(t)) = dφ, 

0 

where s is a complex variable, properly constrained within a region so that the integral 
converges. Y (s) is a complex function as a result. Note that the Laplace transform is linear, 
and so it is distributive: L(x(t) + y(t)) = L(x(t)) + L(y(t)). The following table gives a list 
of some useful transform pairs and other properties, for reference. 

The last two properties are of special importance: for control system design, the differenti
ation of a signal is equivalent to multiplication of its Laplace transform by s; integration of 
a signal is equivalent to division by s. The other terms that arise will cancel if y(0) = 0, or 
if y(0) is finite. 

22.3.2 Convergence 

We note first that the value of s affects the convergence of the integral. For instance, if 
y(t) = et, then the integral converges only for Re(s) > 1, since the integrand is e1−s in this 
case. Although the integral converges within a well-defined region in the complex plane, the 
function Y (s) is defined for all s through analytic continuation. This result from complex 
analysis holds that if two complex functions are equal on some arc (or line) in the complex 
plane, then they are equivalent everywhere. It should be noted however, that the Laplace 
transform is defined only within the region of convergence. 

22.3.3 Convolution Theorem 

One of the main points of the Laplace transform is the ease of dealing with dynamic systems. 
As with the Fourier transform, the convolution of two signals in the time domain corresponds 
with the multiplication of signals in the frequency domain. Consider a system whose impulse 
response is g(t), being driven by an input signal x(t); the output is y(t) = g(t) ← x(t). The 
Convolution Theorem is 

� t 
y(t) = g(t − φ )x(φ )dφ �� Y (s) = G(s)X(s). 

0 

Here’s the proof given by Siebert: 

Y (s) = 
� √ 

y(t)e−stdt 
0 

= 
� √ 

0 

�� t 

0 
g(t − φ ) x(φ ) dφ 

� 

e−st dt 

= 
� √ 

0 

�� √ 

0 
g(t − φ ) h(t − φ ) x(φ ) dφ 

� 

e−stdt 

= 
� √ 

0 
x(φ ) 

�� √ 

0 
g(t − φ ) h(t − φ ) e−st dt 

� 

dφ 
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e

y(t)


(Impulse) ζ(t)


(Unit Step) 1(t)


(Unit Ramp) t


−∂t


sin �t 

e

cos �t 

−∂t sin �t 

e−∂t cos �t 

1 
b − a 

(e−at − e−bt) 

1 � 
1 

ab 
1 + 

a − b 
(be−at − ae−bt) 

�n 
e−α�nt sin �n 1 − ψ2t≈ 

1 − ψ2 

1 � � � 

1 − ≈ 
1 − ψ2 

e−α�nt sin �n 1 − ψ2t + δ 

≈ 
1 − ψ2 

δ = tan−1 
ψ 

(Pure Delay) y(t − φ )1(t − φ ) 
dy(t)

(Time Derivative) 
dt 

� t 
(Time Integral) y(φ )dφ 

0 

⇒∀ 

⇒∀ 

⇒∀ 

⇒∀ 

⇒∀ 

⇒∀ 

⇒∀ 

⇒∀ 

⇒∀ 

⇒∀ 

⇒∀ 

⇒∀ 

⇒∀ 

⇒∀ 

⇒∀ 

⇒∀ 

Y (s) 

1 
1 
s 
1 
2s
1 

s + ∂ 

s

s2 + �2 
s 

2 + �2 

(s + ∂)2 + �2 

s + ∂ 
(s + ∂)2 + �2 

1 
(s + a)(s + b) 

1 
s(s + a)(s + b) 

�2 n 

s2 + 2ψ�ns + �2 n 

�2 n 

s(s2 + 2ψ�ns + �2 n) 

Y (s)e−sφ 

sY (s) − y(0) 
� 0+Y (s) 0− y(t)dt + 

s s 
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� √ 
x(φ ) G(s)e−sφ = dφ 

0 

= G(s)X(s), 

where h(t) is the unit step function. When g(t) is the impulse response of a dynamic system, 
then y(t) represents the output of this system when it is driven by the external signal x(t). 

22.3.4 Solution of Differential Equations by Laplace Transform 

The Convolution Theorem allows one to solve (linear time-invariant) differential equations 
in the following way: 

1. Transform the system impulse response g(t) into G(s), and the input signal x(t) into 
X(s), using the transform pairs. 

2. Perform the multiplication in the Laplace domain to find Y (s). 

3. Ignoring the effects of pure time delays, break Y (s) into partial fractions with no powers 
of s greater than 2 in the denominator. 

4. Generate the time-domain response from the simple transform pairs. Apply time delay 
as necessary. 

Specific examples of this procedure are given in a later section on transfer functions. 

22.4 Background for the Mapping Theorem 

The mapping theorem uses concepts from complex analysis, specifically Cauchy’s Theorem 
and the Residue Theorem. References for this section include Ogata and Hildebrand. 
First, consider a function of the complex variable s = u + iv: f (s). We say f (s) is analytic in 
a region S if it has finite derivative and takes only one value at each point s in S. Therefore 
discontinuous or multi-valued functions, e.g., 

≈
s, are not analytic functions. Polynomials in 

s are analytic, as are many functions that can be written as a Taylor or Laurent series. An 
especially important class for control system design is the rational function, a polynomial in 
s divided by another polynomial in s. Rational functions are consequently zero for certain 
values of s, the roots of the numerator, and undefined for other values of s, the roots of the 
numerator, also called the poles. 
The integral of interest here is 

f (s)ds 

taken on a path in the s-plane. A closed path in the complex s-plane leads to a closed path 
in the f (s) plane, but more than one point in the s plane can map to a single f (s)-plane 
point, so the number of complete loops may not be the same. 
The usual rules of integration apply in complex analysis, so that, insofar as the antiderivative 
of f (s), denoted F (s) exists, and f (s) is analytic on the path, we have 
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� s2 

f (s)ds = F (s2) − F (s1). 
s1 

It appears that this integral is zero for a closed path, since s1 = s2. Indeed, Cauchy’s theorem 
states that it is, provided that f (s) is analytic on the path, and everywhere within the region 
enclosed. This latter condition results from the following observation. Consider the function 
f (s) = ∂sn; on a circular path of radius r, we have s = reiζ , and thus 

� � 2ψ 
f (s)ds = i∂r n+1 e i(n+1)ζ dχ 

0 
� 2ψ 

= i∂r n+1 [cos(n + 1)χ + i sin(n + 1)χ]dχ. 
0 

The second integral is clearly zero for all n, whereas the first is zero except in the case of 
n = −1, for which we obtain 

f (s)ds = i∂2β. 

This result does not depend on r, and so applies to a vanishingly small circle around the 
point s = 0. It can be shown also that the result holds for any closed path around the simple 
pole at s = 0, which characterizes the function. The residue theorem is an extension to an 
arbitrary number of simple poles which are enclosed by a path: 

⎫

f (s)ds = i2β ∂i, 

The constants ∂i are the residues associated with the poles, i.e., 

∂1 ∂2
f (s) = + + . . . 

s − p1 s − p2 

We show in another section how any strictly proper rational function (that is, the polynomial 
order in the numerator is less than that of the denominator) in s can be put into this form. 
The connection between Cauchy’s theorem and the residue theorem is indicated in the figure 
below. Here, the integral inside the closed path is zero because it excludes the three simple 
poles. Without the cuts however, the integral over the outermost curve would be equal to 
the summation of residues for the poles within (multiplied by i2β). Note that it is only the 
terms with (s − ai)−1, i.e., simple poles at ai, that generate nonzero components. 
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. 

. . 

Im(s) 

Re(s) 

Looking toward the mapping theorem now, consider the function 

f (s) =
(s − z1)m1 (s − z2)m2 . . . 

. 
(s − p1)n1 (s − p2)n2 . . . 

Working through some algebra, it is straightforward that 

m2 n1 n2
f ∗(s)/f (s) = 

m1 
+ 
s − z2 

+ . . . − . . . 
s − z1 s − p1 

− 
s − p2 

resulting in 

f ∗(s)/f (s)ds = i2β(Z − P ), 

where Z = m1 + m2 + . . . is the number of zeros in f , and P = n1 + n2 + . . . is the number 
of zeros. The mapping theorem comes from now looking in detail at the integral above: 

f (s) = |f (s) e iζ(s)|
d f (s) iζ(s) + i

dχ(s)
f ∗(s) = 

|
ds 
| 
e |f (s) e iζ(s)|

ds 

f ∗(s)/f (s) = 
1 d f (s) dχ(s)| 

+ i 
f (s)|

|
ds ds|

d log f (s) dχ(s) 
= 

| | 
+ i ,

ds ds 

Considering the integral of f ∗(s)/f (s) over a closed contour in the s-plane, we take advantage 
of the fact that exact differentials d log f (s) and dχ(s) have been found. Both terms pertain | |
to the f (s) plane, not the f ∗(s)/f (s) plane. The first integral is zero, 
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� s2 

d log f = 0, 
s1 

| | 

since log f (s) has to be the same at the start and end of the closed contour. | |
Taking χ(s) counterclockwise through angle n2β results in the second term 

� n2ψ 
idχ = in2β. 

0 

As noted above, a single circuit in the s-plane may or may not map to a single circuit in the 
f (s)-plane, so n depends directly on the function f (s), and is not necessarily one. Assembling 
the results, we have 

i2β(Z − P ) = in2β −∀ Z − P = n, 

which is the mapping theorem. In words, it states that the number of zeros minus the number 
of poles enclosed in a contour in the s-plane is equal to the number of counterclockwise 
encirclements of the origin, in the f (s) plane. 


