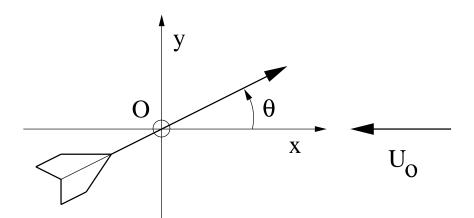
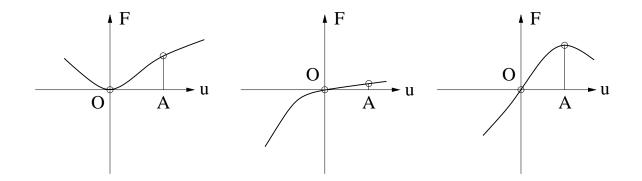
13.49 Homework #1

- 1. Consider a weather vane in a wind of velocity U_o . If θ is the angle of the vane with respect to the wind direction,
 - (a) Write the single-degree of freedom (N) linearized equations of motion about the fixed axis **0**.
 - (b) Write N_{θ} , $N_{\dot{\theta}}$, and $N_{\ddot{\theta}}$ in terms of N_v , N_r , $N_{\dot{r}}$, etc..
 - (c) If we consider the differential equation


$$A\ddot{y}(t) + B\dot{y}(t) + Cy(t) = 0,$$

the condition for stability is that A, B, and C must have the same sign. Express this requirement in terms of the derivatives in the previous question. Give physical interpretations for what would make such a device stable or unstable.


(d) Create a numerical model of this system, using the MATLAB ODE solver ode45. The system equation can be written as two first-order equations:

$$\frac{d}{dt} \left\{ \begin{array}{c} \dot{\theta} \\ \theta \end{array} \right\} = \left[\begin{array}{c} -B/A & -C/A \\ 1 & 0 \end{array} \right] \left\{ \begin{array}{c} \dot{\theta} \\ \theta \end{array} \right\}.$$

Simulate the system response to nonzero initial conditions (e.g., $\theta(0) = 1, \dot{\theta}(0) = 0$). Discuss, using several examples, response sensitivity to *B* and *C*, which are related to the aerodynamic coefficients. For example, look at the range $\{A, B, C\} = \{1, \pm 3, \pm 3\}$.

2. The figure below shows some characteristic fluid force curves versus a motion parameter. Give the linear hydrodynamic coefficient at two different operating conditions, origin O and A: is it zero, small, finite positive, finite negative?

