13.49 Homework \#1

1. Consider a weather vane in a wind of velocity U_{o}. If θ is the angle of the vane with respect to the wind direction,
(a) Write the single-degree of freedom (N) linearized equations of motion about the fixed axis $\mathbf{0}$.
(b) Write $N_{\theta}, N_{\dot{\theta}}$, and $N_{\ddot{\theta}}$ in terms of $N_{v}, N_{r}, N_{\dot{r}}$, etc..
(c) If we consider the differential equation

$$
A \ddot{y}(t)+B \dot{y}(t)+C y(t)=0
$$

the condition for stability is that A, B, and C must have the same sign. Express this requirement in terms of the derivatives in the previous question. Give physical interpretations for what would make such a device stable or unstable.
(d) Create a numerical model of this system, using the MATLAB ODE solver ode45. The system equation can be written as two first-order equations:

$$
\frac{d}{d t}\left\{\begin{array}{c}
\dot{\theta} \\
\theta
\end{array}\right\}=\left[\begin{array}{cc}
-B / A & -C / A \\
1 & 0
\end{array}\right]\left\{\begin{array}{l}
\dot{\theta} \\
\theta
\end{array}\right\}
$$

Simulate the system response to nonzero initial conditions (e.g., $\theta(0)=1, \dot{\theta}(0)=0)$. Discuss, using several examples, response sensitivity to B and C, which are related to the aerodynamic coefficients. For example, look at the range $\{A, B, C\}=\{1, \pm 3, \pm 3\}$.

2. The figure below shows some characteristic fluid force curves versus a motion parameter. Give the linear hydrodynamic coefficient at two different operating conditions, origin O and A : is it zero, small, finite positive, finite negative?

