13.49 Homework \#7

The parameters for the linearized sway/yaw motions of a swimmer delivery vehicle are given below.

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Parameters, all nondimensional except [U,L]
```

```
U = 4.0 ; % m/s
```

U = 4.0 ; % m/s
L = 5.3 ; % m
L = 5.3 ; % m
Izz = 0.006326 ;
Izz = 0.006326 ;
m = 0.1415 ;
m = 0.1415 ;
xg = 0.
xg = 0.
Yv = -0.1 ;
Yv = -0.1 ;
Yr = 0.03;
Yr = 0.03;
Nv = -0.0074 ;
Nv = -0.0074 ;
Nr = -0.016 ;
Nr = -0.016 ;
Ydelta = 0.027 ;
Ydelta = 0.027 ;
Yvdot = -0.055 ;
Yvdot = -0.055 ;
Yrdot = 0. ;
Yrdot = 0. ;
Nvdot = 0. ;
Nvdot = 0. ;
Nrdot = -0.0034 ;
Nrdot = -0.0034 ;
Ndelta = -0.013 ;

```
Ndelta = -0.013 ;
```

You are asked to develop an LQG/LTR controller for this plant, and it is suggested that you compose a single Matlab script to perform the steps in sequence. Please make sure you answer all the questions, and include a listing of your code. This entire design is made in nondimensional coordinates.

1. Plant Modeling and Characteristics

(a) Construct a state-space plant model, to take rudder angle δ as an input and give heading angle ϕ as an output. Please provide the numerical values for the A, B, C matrices. There should be three states in your model, with one input channel and one output channel.
(b) Compute and list the controllability and observability matrices; is the plant state-controllable and state-observable?
(c) Where are the poles of your plant model? Is this model stable?
(d) Show a plot of your plant's step response

2. LQR and KF Designs

(a) Using the Matlab command lqr(), you can compute the LQR feedback gain K, for given A, B, Q, and R matrices. With the choices $Q=C^{T} C$, and $R=\rho$, list K and plot the closed-loop step responses for the choices $\rho=[0.1,0.001,0.00001]$. How do the gains and step responses change as you make ρ smaller and smaller?
Note that the fundamental closed-loop LQR system is

$$
\begin{aligned}
\dot{\vec{x}} & =(A-B K) \vec{x}+B K \vec{x}_{\text {desired }} \\
y & =\vec{x}
\end{aligned}
$$

i.e., the input to the closed-loop system is $\vec{x}_{\text {desired }}$ and the output is \vec{x}. Your plot should show specifically the output ϕ, for an input of $\vec{x}_{\text {desired }}=\left[v_{\text {desired }}=0, r_{\text {desired }}=0, \phi_{\text {desired }}=1\right]$. This
compression can be achieved in one step by premultiplying the system by C^{T}, and post-multiplying it by C :

$$
\begin{aligned}
\dot{\vec{x}} & =(A-B K) \vec{x}+B K C^{T} y_{\text {desired }} \\
y & =C \vec{x}
\end{aligned}
$$

(b) The Matlab command lqe() can be used to generate the Kalman filter gain H, given design matrices A, C, V_{1}, and V_{2}. For the choices $V_{1}=I_{3 \times 3}$ and $V_{2}=0.01$, compute H, and make a plot of the closed-loop step response. Be sure to give the numerical values of H.
Note that the lqe () command asks for a disturbance gain matrix G; you should set this to $I_{3 \times 3}$. The closed-loop KF system is as follows:

$$
\begin{aligned}
\dot{\hat{x}} & =(A-H C) \hat{x}+H y \\
\hat{y} & =C \hat{x}
\end{aligned}
$$

i.e., the input is the measurement y and the output is an estimated version of it, \hat{y}.

3. Loop Transfer Recovery

The LQG compensator is a combination of the KF and LQR designs above. With normal negative feedback, the compensator $C(s)$ has the following state space representation:

$$
\begin{aligned}
\dot{\vec{z}} & =(A-B K-H C) \vec{z}+H e \\
u & =K \vec{z}
\end{aligned}
$$

so that the input to the compensator is the tracking error $e=r-y$, and its output u is the control action to be applied as input to the plant. The total open-loop transfer function is the $P(s) C(s)$; in Matlab, you may simply multiply the systems, e.g., sysPC = sysP * sysC ;
(a) Make a \log (magnitude) plot of the KF open-loop transfer function $L(s)=C(s I-A)^{-1} H$, versus \log (frequency). You may find the Matlab command freqresp() helpful. $|L(s)|$ should be large at low frequencies, and small at high frequencies, consistent with the rules of loopshaping.
(b) As $\rho \rightarrow 0$, the product $P(s) C(s) \rightarrow L(s)$. Demonstrate this by computing $P(s) C(s)$ for the three different values of ρ above, and overlaying the respective $|P(s) C(s)|$ over the plot of part 3 a).
(c) Make a closed-loop step response plot for the smallest value of ρ. How does it compare with the KF step response of part 2 b)?

In real LTR applications, the particular values of V_{1} and V_{2} can be picked to control the low-frequency gain, and crossover frequency of the open-loop KF system $L(s)=C(s I-A)^{-1} H$.

