13.49 Homework #3

- 1. Consider a submarine moving forward at speed U, and restricted to small motions in the vertical (x-z) plane. Assume that:
 - The submarine is symmetric in the x y plane and $y_G = 0$. The submarine is not symmetric in the x z plane due to the sail, etc., but assume it is *nearly* symmetric, so that you can omit certain hydrodynamic terms.
 - At rest, the submarine is neutrally buoyant and stable with the x and y axes horizontal. What does this tell us about the magnitude of the buoyant force and where it acts with respect to the center of weight?
 - (a) Derive the equations of motion for the submarine moving at speed U.
 - (b) Derive the hydrostatic, restoring pitch moment for small pitch θ .
 - (c) Linearize the inertial terms in the equations of motion.
 - (d) Expand the fluid forces and moments in terms of the motions, as we have done in class for the yaw/sway problem. Omit nonlinear and memory effects, and be sure to include the hydrostatic moment. Explain your choices.
 - (e) Write out the complete linearized equations of motion. Does surge decouple from pitch and heave? Write out the coupled equations in matrix form.
 - (f) Can the submarine be stable in pitch without feedback control? Can the submarine be stable in depth without feedback control?
- 2. Using the lifting surface formulas, estimate the coefficient K_v of a submarine sail as shown below, for U = 10m/s.

- 3. Consider a long ellipsoidal body of length l and diameter d.
 - (a) With l/d = 7.0, approximate the cross-body added mass, using slender-body theory, and compare it with the exact results from the table below (Blevins, 1979).
 - (b) Perform the slender body calculation also for a sphere, and compare again to the exact result.
 - (c) What is the added mass in the in-line direction?

Sphere added mass:	$2\rho\pi a^{3}/3$
Ellipsoid cross-body added mass:	$4\alpha\rho\pi ab^2/3$
where $a/b = 0.1$:	$\alpha = 0.075$
0.2:	0.143
0.6:	0.355
1.0:	0.500
2.0:	0.704
5.0:	0.894
7.0:	0.933
10.0:	0.960
∞:	1.000
Ellipsoid longitudinal added mass:	$4\alpha\rho\pi ab^2/3$
where $a/b = 0.1$:	$\alpha = 6.148$
0.2:	3.008
0.6:	0.908
1.0:	0.500
2.0:	0.210
5.0:	0.059
7.0:	0.036
10.0:	0.021
∞ :	0.000

2*a*: sphere diameter or ellipsoid length, 2*b*: ellipsoid diameter

