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23	 APPENDIX 2: ADDED MASS VIA LAGRANGIAN 
DYNAMICS 

The development of rigid body inertial dynamics presented in a previous section depends on 
the rates of change of vectors expressed in a moving frame, specifically that of the vehicle. An 
alternative approach is to use the lagrangian, wherein the dynamic behavior follows directly 
from consideration of the kinetic co-energy of the vehicle; the end result is exactly the same. 
Since the body dynamics were already developed, we here develop the lagrangian technique, 
using the analogous example of added mass terms. Among other effects, the equations elicit 
the origins of the Munk moment. 

23.1 Kinetic Energy of the Fluid 

The added mass matrix for a body in six degrees of freedom is expressed as the matrix Ma, 
whose negative is equal to: 
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M 
Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

u̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

u̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

,
 (260)


(Continued on next page)



� 

23.1 Kinetic Energy of the Fluid 125 

where (X, Y, Z) denotes the force, (K, M, N) the moment, (u, v, w) denotes the velocity and 
(p, q, r) the angular velocity. The sense of Ma is that the fluid forces due to added mass are 
given by 
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The added mass matrix Ma is completely analagous to the actual mass matrix of the vehicle, 
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0 yG Ixx Ixz−zG 

0 
xy 

−xG Ixy Iyy I
0 

zG yz 

Ixz Iyz Izz xG−yG 

where [xG, yG, zG] are the (vessel frame) coordinates of the center of gravity. The mass matrix 
is symmetric, nonsingular, and positive definite. These properties are also true for the added 
mass matrix Ma, although symmetry fails when there is a constant forward speed. 
The kinetic co-energy of the fluid Ek is found as: 

1 
Ek = q T Ma q (263)− 

2 

where q T = (u, v, w, p, q, r). We expand to find in the non-symmetric case: 

−2Ek = Xu̇u 2 + Xv̇uv + Xẇuw + Xṗup + Xq̇uq + Xṙur + 

Yu̇uv + Yv̇v 
2 + Yẇvw + Yṗvp + Yq̇vq + Yṙvr + 

Zu̇uw + Zv̇vw + Zẇw 2 + Zṗwp + Zq̇wq + Zṙwr + 

Ku̇up + Kv̇vp + Kẇwp + Kṗp 2 + Kq̇pq + Kṙpr + 

Mu̇uq + Mv̇vq + Mẇwq + Mṗpq + Mq̇q 
2 + Mṙqr + 

Nu̇ur + Nv̇vr + Nẇwr + Nṗpr + Nq̇qr + Nṙr 
2 . (264) 

For the purposes of this discussion, we will assume from here on that Ma is symmetric, that 
is Ma = Ma

T , or, for example, Yu̇ = Xv̇. In general, this implies that the i’th force due to 
the j’th acceleration is equal to the j’th force due to the i’th acceleration, for i and j = 
[1,2,3,4,5,6]. Refering to the above equation, these terms occur as pairs, so the asymmetric 
case could be reconstructed easily from what follows. By restricting the added mass to be 
symmetric, then, we find: 
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2 + Zẇw 2 + Kṗp 2 + Mq̇q 
2 + Nṙr 

2 

2M

2X

−2Ek = Xu̇u 2 + Yv̇v +


v̇uv + 2Xẇuw + 2Xṗup + 2Xq̇uq + 2Xṙur +


2Yẇvw + 2Yṗvp + 2Yq̇vq + 2Yṙvr +


2Zṗwp + 2Zq̇wq + 2Zṙwr +


2Kq̇pq + 2Kṙpr +


ṙqr. (265)


23.2 Kirchhoff ’s Relations 

To derive the fluid inertia terms in the body-referenced equations of motion, we use Kirch-
hoff’s relations with the co-energy Ek ; see the derivation below, or Milne-Thomson (1960). 
These relations state that if γv = [u, v, w] denotes the velocity vector and γ� = [p, q, r] the 
angular velocity vector, then the inertia terms expressed in axes affixed to a moving vehicle 
are 

γ � �Ek �Ek
F = � , (266)− 

�t �γv 
− γ × 

�γv 

γ � �Ek �Ek �Ek
Q = − 

�t �γ
�

� 
− γv × 

�γv 
. (267)

� 
− γ × 

�γ

γ γwhere F = [X, Y, Z] express the force vector, Q = [K, M, N ] the moment vector, and ×
denotes the cross product. 

23.3 Fluid Inertia Terms 

Applying Kirchhoff’s relations to the expression for the kinetic co-energy with a symmetric 
added mass matrix, we derive the following terms containing the fluid inertia forces: 

X = +Xu̇u̇+ Xv̇( ̇v − ur) + Xẇ( ˙

−Y
w + uq) + Xṗṗ+ Xq̇q̇ + Xṙṙ

v̇vr + Yẇ(vq − wr) − Yṗpr − Yq̇qr − Yṙr 
2 

+Zẇwq + Zṗpq + Zq̇q 
2 + Zṙqr. (268) 

The Y and Z forces can be obtained, through rotational symmetry, in the form: 

+Y

Y = +Xv̇( ̇u + ur) − Xẇ)up


v̇( ̇v + vr) + Yẇ( ˙
w − vp + wr) + Yṗ( ̇p + pr) + Yq̇( ̇q + qr) + Yṙ( ̇r + r 2) 

−Zẇwp − Zṗp 2 − Zq̇pq − Zṙpr (269) 
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+Y

Z = −Xu̇uq + Xv̇(up − vq) + Xẇ( ̇u − wq) − Xṗpq − Xq̇q 
2 − Xṙqr 

v̇vp + Yẇ( ̇v + wp) + Yṗp 2 + Yq̇pq + Yṙpr 

+Zẇẇ + Zṗṗ+ Zq̇q̇ + Zṙṙ (270) 

The apparent imbalance of coefficients comes from symmetry, which allows us to use only 
the 21 upper-right elements of the added mass matrix in Equation 260, e.g., Mv̇ = Yq̇. 
The moments K, M , and N are obtained in a similar manner as: 

K = −Xv̇wu + Xẇuv + Xṙuq + Xṗu̇− Xq̇ur 
2−Yv̇vw + Yẇ(v 

2 − w ) + Yṗ( ̇v − wp) − Yq̇(vr + wq) + Yṙ(vq − wr)


+Zẇvw + Zṗ( ˙


+N

+M

w + vp) + Zq̇(vq − wr) + Zṙ(wq + vr)


+Kṗṗ+ Kq̇( ̇q − rp) + Kṙ( ̇r + pq)


ṙ(q 
2 − r 2) − Mq̇qr


ṙqr (271)


2M = +Xu̇uw + Xv̇vw + Xẇ(w 2 − u ) + Xṗ(ur + wp) + Xq̇( ̇u + wq) + Xṙ(wr − up) 

−Yẇuv + Yṗvr + Yq̇v̇ − Yṙvp 

−Zẇuw + Zṗ(wr − up) + Zq̇( ẇ − uq) − Zṙ(ur + wp) 
2

−N

+Kṗpr + Kq̇( ̇p + qr) + Kṙ(r 
2 − p )


+Mq̇q̇ − Mṙpq + Mṙṙ


ṙpr (272)


2

+Y

N = −Xu̇uv + Xv̇(u 2 − v ) − Xẇvw − Xṗ(uq + vp) + Xq̇(up − vq) + Xṙ( ̇u − vr)


v̇uv + Yẇuw + Yṗ(up − vq) + Yq̇(uq + vp) + Yṙ( ̇v + ur)


−Zṗwq + Zq̇wp + Zṙẇ

2

+N

−Kṗpq + Kq̇(p 2 − q ) + Kṙ( ̇p − qr)


+Mq̇pq + Mṙ( ̇q + pr)


ṙṙ (273)


23.4 Derivation of Kirchhoff ’s Relations 

We can derive Kirchhoff’s relation for a lagrangian L(γv, γ�, t), involving the velocity γv and 
angular velocity γ�, whose components will be expressed in a local coordinate system rotating 
with the angular velocity γ�, i.e. in a reference system fixed on the body. The principle to 
satisfy is that of least action, i.e. to minimize the integral I (Crandall et al., 1968): 
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� t2 

I = L(γv, γ�, t)dt (274) 
t1 

At the minimum value of I - the admissible condition - the variation of I, ζI, and hence of 
L with the velocity γv and angular rate γ� vanishes. 
Our condition ζI = 0, as written, involves only the lagrangian, which in the more general case 
is the kinetic co-energy minus the potential energy of the system. Since we are considering 
the motion of a body in an unbounded, homogeneous fluid, there is no potential energy, so 
the lagrangian is exactly the kinetic energy: 

L = Ek . (275) 

Hamilton’s principle in its general form also accounts for applied forces and moments γΣ. They 
are defined to align with the generalized, infinitesimal linear and angular displacements ζγ
and ζγδ, leading to 

�, t) + Σu,v,w , ζγ + Σp,q,r, ζγ
�� 
dt. (276)ζI = 

� t2 � 
ζL(γv, γ γ � 

� �

γ δ 
t1 

Now, the lagrangian is invariant under coordinate transformation, so it is a function of the 
free vectors of velocity and angular velocity. Using the notation detailed in the Nomen
clature section below, ζγ δ are interpreted as free vectors, while ζ� and ζδ are the � and ζγ

projections of the free vectors onto a given reference frame. The following relationships link 
the displacements with the body-referenced rates: 

v = + � � �, and (277)
�t 
�δ 

� = . (278)
�t 

A variation of the lagrangian at a given time t is, to first order, 

�L �L 
ζL(γv, γ γ γ�, t) = , ζv + , ζ� (279)

�γv �γ

The variations ζγv and ζγ�, in view of equations 277 and 278, can be written as 

ζγv = ζv T ˆ x}x + {v T ζˆ

�ζ� 
�T 

= + � � ζ� x + γv × ζγˆ δ, (280)
�t 



� 

� � � � 

� 

� � �� 

� 

� 
� 

� �

23.4 Derivation of Kirchhoff’s Relations 129 

� = ζ�T ˆ x}ζγ x + {�T ζˆ

�ζδ 
�T 

= x + γ δ. (281)ˆ � × ζγ
�t 

x} and {wT ζˆThe terms {vT ζˆ x} above represent the effects of the variation of body orienta
tion, and lead to one of the more subtle points of the derivation. It can be shown that ζx̂, 
the displacement of the unit triad ˆ δ × ˆx is ζγ x, leading for example to vT (ζγ x). This form, δ × ˆ

x} and {wT ζˆhowever, fails to capture what is meant by {vT ζˆ x}, specifically: how the free 
vectors ζγv and ζ γw change as the triad rotates, but the projections v and w remain constant. 
With this in mind, one can easily derive the proper interpretations, as written above. 
We now return to the evaluation of the lagrangian L. Combining terms, we see that there 
will be five inner products to consider. Writing the terms involving the time derivatives as 
ζL1 and ζI1, we have from an integration by parts 

� t2 

�� 
�L �ζ� 

�T 
�L �ζδ 

�T �
⎭ 

ζI1 = ⎝ , x ˆ ⎠ dtˆ + , x 
t1 �γv �t �γ� �t 
� t2 

⎬� � � ��

� �L � �L 
= − 

t1 �t �γv
, ζγ + , ζγ� δ dt. (282)

�t �γ

There are no terms remaining at the time boundaries because the lagrangian is zero at these 
points. 
In evaluating the remaining terms, in ζI2, one needs to use the following property of triple 
vector products: 

γ< γa,γb × γc >=< γc, b × γa >=<γb,γc × γa > . (283) 

Hence, the variation of the action I2, expressed in terms of vectors, is 

�L 
ζI2 = 

� t2 
⎬� 

, γ � + γv × ζγ
�L

� × ζγ� × ζγ δ + , γ δ dt 
t1 �γv �γ
� t2 

⎬� � � ��

�L �L �L 
= � , ζγ + γv � δ dt. (284)− 

t1 

γ × 
�γv 

× 
�γv 
+ γ × 

�γ
, ζγ

Finally, we write the part of ζI due to the generalized forces: 

ζI3 = 
� t2 ��

γ � + Σp,q,r, ζγ
�� 
dt. (285)Σu,v,w , ζγ γ δ 

t1 

The Kirchoff relations follow directly from combining the three action variations. The kinetic 
co-energy we developed is that of the fluid, and so the generalized forces indicate what forces 
the body would exert on the fluid; with a sign change, these are the forces that the fluid 
exerts on the body. 
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23.5 Nomenclature 

23.5.1 Free versus Column Vector 

We make the distinction between a free vector fγ, which is an element of a linear vector 
field, and a column vector f which denotes the components of the vector fγ in a given 
coordinate system. The connection between the two concepts is given via the free triad x̂, 
containing as elements the unit vectors of the chosen Cartesian system, ˆ j, ̂i, ̂ k, i.e.: 

x = (̂ j, ̂ˆ i, ̂ k)T (286) 

The notation is hybrid, but convenient since it allows us to write: 

γ ˆf = fT x (287) 

f

where fT denotes the transpose of f , i.e. a row vector. The product between the row vector 
T x is in the usual matrix multiplication sense. and the column vector ˆ

23.5.2 Derivative of a Scalar with Respect to a Vector 

The derivative of a scalar L with respect to a vector γx is denoted as: 

�L 
(288)

�γx 

and is a vector with the same dimension as γx, whose element i is the derivative of L with 
respect to the ith element of γx, and in the same direction: 

�L �L 
= (289) 

x �γ�γ xii 

23.5.3 Dot and Cross Product 

f,γThe dot product of two free vectors fγ and γg is denoted as < γ g >, and we use the following 
notation for column vectors: < fT x, gT ˆˆ x >. The cross product of two vectors fγ and γg is 

γz = fγ× γg z = f � g., denoted in terms of column vectors as 


