
3 NONLINEAR COEFFICIENTS IN DETAIL

The method of hydrodynamic coefficients is a somewhat blind series expansion of the fluid 
force in an attempt to provide a framework on which to base experiments and calculations 
to evaluate these terms. The basic dificulty, i.e. the intractability of the governing equations 
of motion of viscous fluid prohibits, at least today and in the near future, a computation of 
these forces. 
Still, we are not totally ignorant about these forces, since a number of symmetries and basic 
laws can be applied to reduce the number of unknown coefficients. This is the purpose of 
this section. 
The basic assumption in using the method of hydrodynamic coefficients is that the forces 
have no memory effects, i.e. past motions have no impact on the fluid forces at the present 
moment. This is not correct when the flow separates, or when large vortices are shed, 
because then the vorticity in the fluid affects the fluid forces for a considerable time after 
they have been shed – i.e. until they move sufficiently far away from the body. We will show 
later some methods which allow us to incorporate the effect of shed vorticity, because under 
certain conditions such effects can not be ignored. 
We employ the following basic facts and assumptions to derive the fluid forces acting on a 
ship, submarine or vehicle: 

1. We retain only first order acceleration terms. Based on Newton’s second law, we expect 
the inertia terms from the fluid to be linearly dependent on acceleration. 

2. We do not include terms coupling velocities and accelerations. Again, based on New-
ton’s second law, we expect inertia forces to depend on acceleration alone. 

3. We consider port/starboard symmetry.	Unless there is a reason not to, this is a useful 
property to us in order to eliminate a certain number of coefficients which are either 
zero or very small. In ships, a propeller introduces an asymmetry port/starboard since 
it rotates in a certain direction (unless it is a twin-screw ship with counter-rotating 
propellers), but in such cases we limit this asymmetry to only propeller-related terms. 

(Continued on next page)
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4. We retain up to third order terms.	 This is a practical consideration and has been 
found to, in general, serve well the purpose of deriving equations which are sufficiently 
accurate in a wide parametric range. It does not constitute an absolute rule, but most 
existing models employ this assumption 

Finally, we find sometimes necessary to use coefficients such as Y v v , providing a drag-related | |
term, whose strict definition would be: 

Y
�2Y 

v v = (v = 0) (36)| |
�v� v| | 

A Taylor series expansion would not include such terms, so their inclusion is motivated by 
physical arguments. 

3.1 Helpful Facts 

To exploit symmetries, we consider the following simple facts: 

•	 A function f (x) which is symmetric in x has zero odd derivatives with respect to x at 
x = 0. The proof is to consider the Taylor series expansion of f (x) about x = 0: 

df 1 d2f 1 d3f 
f (x) = f (0) + (0)x + 

dx2 
(0)x 2 + 

dx3 
(0)x 3 + ... (37)

dx 2! 3! 

Symmetry gives that for all x: 

f (x) = f (−x)	 (38) 

The only way that (38) is satisfied given the expression (37) is that all odd derivatives 
of f (x) must be zero, i.e., for n odd: 

dnf 
(0) = 0	 (39)

dxn 

•	 A function f (x) which is anti-symmetric in x has zero even derivatives with respect to 
x at x = 0. The proof is exactly analogous to the result above, using the anti-symmetry 
condition: 

f (x) = −f (−x)	 (40) 

to find that, for n even: 

dnf 
(0) = 0	 (41)

dxn 
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3.2 Nonlinear Equations in the Horizontal Plane 

To demonstrate the methodology, we will derive the governing nonlinear equations of motion 
in the horizontal plane (surge, sway and yaw), employing the assumptions above. We will 
not include drag related terms of the form of equation 36 for the time being. We start by 
re-stating the inertia terms driven by external forces, which include the fluid forces: 

m( ̇u − vr − xGr 
2) = X 

m( ̇v + ur + xG ṙ) = Y 

Izz ṙ + mxG( ̇v + ur) = N (42) 

where we have assumed that w = 0, p = 0, q = 0, yG = 0, zG = 0. 

3.2.1 Fluid Force X 

By denoting the rudder angle as ζ, we derive the following expression for the fluid force X, 
valid up to third order: 

3 + Xvvv 
2X = Xe + Xu̇u̇+ Xuu + Xuuu 2 + Xuuuu + Xrrr 

2 + Xννζ
2 + 

2 2 

X

Xrvrv + Xrνrζ + Xvν vζ + Xvvuv u + +Xrrur u + Xννuζ
2 u +


rνurζu + Xrvurvu + +Xvνuvζu + Xrvνrvζ (43)


We have used three basic properties, i.e., that the fluid force X, independent of the forward 
velocity, must be: 

1. a symmetric function of v when r = 0 and ζ = 0; 

2. a symmetric function of r when v = 0 and ζ = 0; 

3. a symmetric function of ζ when r = 0 and v = 0; 

This is a result of port/starboard symmetry and is expressed as: 

X(u, v, r = 0, ζ = 0) = X(u, −v, r = 0, ζ = 0) (44) 

X(u, v = 0, r, ζ = 0) = X(u, v = 0, −r, ζ = 0) (45) 

X(u, v = 0, r = 0, ζ) = X(u, v = 0, r = 0, −ζ) (46) 

These relations imply that all odd derivatives of X with respect to v at v = 0 are zero, when 
r = 0 and ζ = 0; and similarly for r and ζ. For example: 

�3X 
�v3 
(u, v = 0, r = 0, ζ = 0) = 0 (47) 
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which implies that Xvvv = 0. Also, since relations such as (44) hold for all forward velocities 
u, it means that derivatives with respect to u of expression (44) are aso true. For example, 
from (47) we derive: 

�4X 
(u, v = 0, r = 0, ζ = 0) = 0 (48)

�v3�u 

or equivalently Xvvvu = 0.

In summary, the symmetries provide the following zero coefficients:


Xv = 0; Xvvv = 0; Xvu = 0; Xvuu = 0; 

Xr = 0; Xrrr = 0; Xru = 0; Xruu = 0; 

Xν = 0; Xννν = 0; Xνu = 0; Xνuu = 0 (49) 

3.2.2 Fluid Force Y 

In the case of the fluid foce Y , the symmetry implies that this force must be an antisymmetric 
function of v when r = 0, ζ = 0; and likewise for r and ζ, i.e.: 

Y (u, v, r = 0, ζ = 0) = −Y (u, −v, r = 0, ζ = 0)


Y (u, v = 0, r, ζ = 0) = −Y (u, v = 0, −r, ζ = 0)


Y (u, v = 0, r = 0, ζ) = −Y (u, v = 0, r = 0, −ζ) (50)


Hence, in analogy with the previous section, the even derivatives of Y with respect to v (and 
then r, and ζ) must be zero, or: 

Y

Y

Yvv = 0; Yvvu = 0 

rr = 0; Yrru = 0 

νν = 0; Yννu = 0 (51) 

Finally, due to port/starboard symmetry, the force Y should not be affected by u when

v = 0, r = 0, ζ = 0, except for propeller effects, which break the symmetry. For this reason,

we will include terms such as Yu to allow for the propeller asymmetry (twin propeller ships

with counter-rotating propellers have zero such terms).

Finally, we derive the following expansion for Y :


Y = Ye + Yuu + Yuuu 2 + Yv̇ v̇ + Yṙṙ + Yvv + Yrr + Yνζ + Yνuζu + Yvuvu + 
2 3Yruru + Yvuuvu 2 + Yruuru + Yνuuζu 2 + Yvvv v + Yrrrr 

3 + Yννν ζ
3 + 

2 2Yrrνr 
2ζ + Yrrvr v + Yvvrv r + Yvvν v 

2ζ + Yvrνvrζ + Yννrζ
2 r + Yννv ζ

2 v (52) 
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3.2.3 Fluid Moment N 

The derivation for N follows the same exact steps as for the side force Y , i.e. the same 
symmetries apply. As a result, we first find that the following coefficients are zero: 

Nvv = 0; Nvvu = 0 

Nrr = 0; Nrru = 0 

Nνν = 0; Nννu = 0 (53) 

Hence, we derive an analogous expansion for the moment: 

N = Ne + Nuu + Nuuu 2 + Nv̇ v̇ + Nṙṙ + Nvv + Nrr + Nνζ + Nνuζu + 
2 3Nvuvu + Nruru + Nvuuvu 2 + Nruuru + Nνuuζu 2 + Nvvv v + Nrrrr 

3 + 
2 2 

N

Nννν ζ
3 + Nrrνr 

2ζ + Nrrvr v + Nvvr v r + Nvvν v 
2ζ + Nvrνvrζ +


ννr ζ
2 r + Nννv ζ

2 v. (54)



