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Reading in the Textbook
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Lecture 3

Differential geometry of surfaces

3.1 Definition of surfaces

• Implicit surfaces F (x, y, z) = 0

Example: x2

a2 + y2

b2
+ z2

c2
= 1 Ellipsoid, see Figure 3.1.

x

y

z

Figure 3.1: Ellipsoid.

• Explicit surfaces

If the implicit equation F (x, y, z) = 0 can be solved for one of the variables as a function
of the other two, we obtain an explicit surface, as shown in Figure 3.2. Example: z =
1

2
(αx2 + βy2)

• Parametric surfaces x = x(u, v), y = y(u, v), z = z(u, v)
Here functions x(u, v), y(u, v), z(u, v) have continuous partial derivatives of the r th order,
and the parameters u and v are restricted to some intervals (i.e., u1 ≤ u ≤ u2, v1 ≤ v ≤ v2)
leading to parametric surface patches. This rectangular domain D of u, v is called
parametric space and it is frequently the unit square, see Figure 3.3. If derivatives of the
surface are continuous up to the rth order, the surface is said to be of class r, denoted
Cr.
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Figure 3.2: Explicit quadratic surfaces z = 1

2
(αx2 + βy2). (a) Left: Hyperbolic paraboloid

(α = −3, β = 1). (b) Right: Elliptic paraboloid (α = 1, β = 3).

In vector notation:

r = r(u, v)

where r = (x, y, z), r(u, v) = (x(u, v), y(u, v), z(u, v))

Example:

r = (u + v, u − v, u2 + v2)

x = u + v

y = u − v

z = u2 + v2











⇒ eliminate u, v ⇒ z =
1

2
(x2 + y2) paraboloid

3.2 Curves on a surface

Let r = r(u, v) be the equation of a surface, defined on a domain D (i.e., u1 ≤ u ≤ u2,
v1 ≤ v ≤ v2). Let β(t) = (u(t), v(t)) be a curve in the parameter plane. Then r = r(u(t), v(t))
is a curve lying on the surface, see Figure 3.3. A tangent vector of curve β(t) is given by
β̇(t) = (u̇(t), v̇(t)) A tangent vector of a curve on a surface is given by:

dr(u(t), v(t))

dt
(3.1)

By using the chain rule:

dr(u(t), v(t))

dt
=

∂r

∂u

du

dt
+

∂r

∂v

dv

dt
= ruu̇(t) + rv v̇(t) (3.2)
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z

D

r(u,v)

r(u(t),v(t))
β(t)=(u(t),v(t))

Parametric Space D 3D Space

Figure 3.3: The mapping of a curve in 2D parametric space onto a 3D biparametric surface
.

3.3 First fundamental form (arc length)

Consider a curve on a surface r = r(u(t), v(t)). The arc length of the curve on a surface is
given by

ds = |dr
dt

|dt = |ru

du

dt
+ rv

dv

dt
|dt

=
√

(ruu̇ + rv v̇) · (ruu̇ + rv v̇)dt

=
√

(ru · ru)du2 + 2rurvdudv + (rv · rv)dv2

=
√

Edu2 + 2Fdudv + Gdv2 (3.3)

where

E = ru · ru, F = ru · rv, G = rv · rv (3.4)

The first fundamental form is defined as

I = dr · dr = (rudu + rvdv) · (rudu + rvdv)

= Edu2 + 2Fdudv + Gdv2 (3.5)

E, F , G are called first fundamental form coefficients Note that E = ru · ru > 0 and G =
rv · rv > 0 if ru 6= 0 and rv 6= 0. The first fundamental form I is positive definite. That is I ≥ 0
and I = 0 if and only if du = 0 and dv = 0 since

I =
1

E
(E du + F dv)2 +

EG − F 2

E
dv2 and EG − F 2 = |ru × rv|2 > 0.

I depends only on the surface and not on the parametrization.
The area of the surface can be derived as follows:
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r(u 0+δu,v 0)−r(u 0, v 0)r(u 0, v 0+δv)−r(u 0, v 0)

r(u 0+δu,v 0)r(u 0,v 0+δv)

r(u 0, v 0)

δA

Figure 3.4: Area of an infinitessimal surface patch.

r(u0, v0 + δv) − r(u0, v0) '
∂r

∂v
δv

r(u0 + δu, v0) − r(u0, v0) '
∂r

∂u
δu

δA = |ruδu × rvδv| = |ru × rv|δuδv

|ru × rv|2 = (ru × rv) · (ru × rv)

Using the vector identity (a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c), we get

|ru × rv|2 = (ru · ru)(rv · rv) − (ru · rv)
2 (3.6)

= EG − F 2 (3.7)

δA =
√

EG − F 2 δuδv, A =

∫ ∫

√

EG − F 2 dudv (3.8)

Example: For the hyperbolic paraboloid r(u, v) = (u, v, u2−v2), let us derive an expression
for the area of a region of its surface corresponding to a the circle u2 +v2 ≤ 1 in the parametric
domain D.

We begin by forming expressions for the derivatives of the position vector r and the first
fundamental form coeffients.

ru = (1, 0, 2u)

rv = (0, 1,−2v)

E = ru · ru = 1 + 4u2

F = ru · rv = −4uv

G = rv · rv = 1 + 4v2

Using Equation (3.8), we find

EG − F 2 = (1 + 4u2)(1 + 4v2) − 16u2v2 = 1 + 4u2 + 4v2 > 0

A =

∫ ∫

D

√

1 + 4u2 + 4v2dudv
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To compute the area, we need to evaluate the double integral over the unit disk u2 +v2 ≤ 1
in the parametric domain D;

A =

∫ ∫

u2+v2≤1

√

1 + 4u2 + 4v2 du dv.

To perform the integration, let us change variables.

u = r cos(θ), v = r sin(θ), and du dv = r dr dθ

A =

∫ ∫

r≤1

√

1 + 4r2 r dr dθ

=

∫

2π

0

∫

1

0

√

1 + 4r2 r dr dθ

=
π

6
(5
√

5 − 1)

3.4 Tangent plane

Tangent plane at a point r(uo, vo) is the union of tangent vectors of all curves on the surface pass
through r(uo, vo), as shown in Figure 3.5. Since the tangent vector of a curve on a parametric
surface is given by dr

dt
= r

u
du
dt

+ rv
dv
dt

, the tangent plane lies on the plane of the vectors ru and
rv. The equation of the tangent plane is

Tp(u, v) = r(u, v) + λru(u, v) + µrv(u, v) (3.9)

where λ and µ are real variables parameterizing the plane.

x

y

z
r=ruu+rvv

r(u0,v0)
Tp

Figure 3.5: The tangent plane at a point on a surface.

3.5 Normal vector

The surface normal is the vector at point r(uo, vo) perpendicular to the tangent plane, see
Figure 3.6. And therefore

N =
ru × rv

|ru × rv|
(3.10)

Note that ru and rv are not necessarily perpendicular.
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x

y

z

Tp

N

ru

rv

Figure 3.6: The normal to the point on a surface.

A regular (ordinary) point P on the surface is defined as one for which ru ×rv 6= 0. A point
where ru × rv = 0 is called a singular point. The condition ru × rv 6= 0 requires that at that
point P the vectors ru and rv do not vanish and have different directions.

Example: Elliptic Paraboloid r(u, v) = (u + v, u − v, u2 + v2)

ru = (1, 1, 2u)

rv = (1,−1, 2v)

ru × rv =

∣

∣

∣

∣

∣

∣

∣

ex ey ez

1 1 2u
1 −1 2v

∣

∣

∣

∣

∣

∣

∣

= 2(u + v)ex + 2(u − v)ey − 2ez 6= 0

|ru × rv| = 2
√

(u + v)2 + (u − v)2 + 1

= 2
√

2u2 + 2v2 + 1 > 0 ⇒ Regular !

N =
(2(u + v), 2(u − v),−2)

2
√

2u2 + 2v2 + 1

=
(u + v, u − v,−1)√

2u2 + 2v2 + 1

at (u, v) = (0, 0),N = (0, 0,−1)

Example: Circular Cone r(u, v) = (u sinα cos v, u sinα sin v, u cos α), see Figure 3.7

ru = (sinα cos v, sin α sin v, cos α)

rv = (−u sinαsinv, u sinαsinv, 0)

ru × rv =

∣

∣

∣

∣

∣

∣

∣

ex ey ez

sinα cos v sinα sin v cos α

−u sinα sin v u sinα cos v 0

∣

∣

∣

∣

∣

∣

∣
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x

z

usinαcosv

usinαsinvsingular

uα

usinα

Figure 3.7: Circular cone.

= −u sinα cos α cos vex − u sinα cos α sin vey + u sin2 αez

At the origin n = 0,

ru × rv = 0

Therefore, the apex of the cone is a singular point.

3.6 Second fundamental form II (curvature)

S P

N

kkg

kn

n

C

t

Figure 3.8: Definition of normal curvature

In order to quantify the curvatures of a surface S, we consider a curve C on S which passes
through point P as shown in Figure 3.8. t is the unit tangent vector and n is the unit normal
vector of the curve C at point P .

dt

ds
= κn = kn + kg (3.11)

kn = κnN (3.12)

where kn is the normal curvature vector normal to the surface, kg is the geodesic curvature
vector tangent to the surface, and k = κn is the curvature vector of the curve C at point P.
κn is called the normal curvature of the surface at P in the direction t.
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Meusnier’s Theorem : All curves lying on a surface S passing through a given point
p ∈ S with the same tangent line have the same normal curvature at this point.

Since N · t = 0, differentiate w.r.t. s

d

ds
(N · t) = N′ · t + N · t′

dt

ds
·N = −t · dN

ds
= −dr

ds
· dN

ds
(3.13)

Recoginizing that ds · ds = dx2 + dy2 + dz2 = dr · dr, we can rewrite Equation 3.13 as:

dt

ds
· N = = −dr · dN

dr · dr
while

dt

ds
· N = κn ·N ≡ κn

center of curvature

center of curvature

N

N

P

P

(a) (b)

Figure 3.9: Definition of positive normal: (a) κn · N = κn; (b) κn ·N = −κn.

II = −dr · dN = −(rudu + rvdv) · (Nudu + Nvdv)

= Ldu2 + 2Mdudv + Ndv2 (3.14)

where

L = N · ruu, M = N · ruv, N = N · rvv (3.15)

Therefore the normal curvature is given by

κn =
II

I
=

L + 2Mλ + Nλ2

E + 2Fλ + Gλ2
(3.16)

where λ = dv
du

.
Suppose P is a point on a surface and Q is a point in the neighborhood of P , as in

Figure 3.10. Taylor’s expansion gives

r(u + du, v + dv) = r(u, v) + rudu + rvdv +
1

2
(ruudu2 + 2ruvdudv + rvvdv2) + H.O.T. (3.17)
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N

P

Q

d

Tp

r=r(u,v)

Figure 3.10: Geometrical illustration of the second fundamental form.

Therefore

PQ = r(u + du, v + dv) − r(u, v) = rudu + rvdv +
1

2
(ruudu2 + 2ruvdudv + rvvdv2) + H.O.T.

Thus, the projection of PQ onto N

d = PQ ·N = (rudu + rvdv) · N +
1

2
II

and since ru · N = rv ·N = 0, we get

d =
1

2
II =

1

2
(Ldu2 + 2Mdudv + Ndv2)

We want to observe in which situation d is positive and negative. When d = 0

Ldu2 + 2Mdudv + Ndv2 = 0

Solve for du

du =
−M ±

√

(Mdv)2 − LNdv2

L
=

−M ±
√

M2 − LN

L
dv (3.18)

N
N N

P
P PTp

Tp

Tp

Figure 3.11: (a) Elliptic point; (b) Parabolic point; (c) Hyperbolic point.

• If M2−LN < 0, there is no real root. That means there is no intersection between the surface
and its tangent plane except at point P . P is called elliptic point (Figure 3.11(a)).

• If M2−LN = 0, there is a double root. The surface intersects its tangent plane with one line
du = −M

L
dv, which passes through point P . P is called parabolic point (Figure 3.11(b)).

• If M2 − LN > 0, there are two roots. The surface intersects its tangent plane with two

lines du = −M±
√

M2−LN
L

dv, which intersect at point P . P is called hyperbolic point

(Figure 3.11(c)).
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3.7 Principal curvatures

The extreme values of κn can be obtained by evaluating dκn

dλ
= 0 of Equation 3.16, which gives:

(E + 2Fλ + Gλ2)(Nλ + M) − (L + 2Mλ + Nλ2)(Gλ + F ) = 0 (3.19)

Since

E + 2Fλ + Gλ2 = (E + Fλ) + λ(F + Gλ),

L + 2Mλ + Nλ2 = (L + Mλ) + λ(M + Nλ)

equation (3.19) can be reduced to

(E + Fλ)(M + Nλ) = (L + Mλ)(F + Gλ) (3.20)

Thus

κn =
L + 2Mλ + Nλ2

E + 2Fλ + Gλ2
=

M + Nλ

F + Gλ
=

L + Mλ

E + Fλ
(3.21)

Therefore κn satisfies the two simultaneous equations

(L − κnE)du + (M − κnF )dv = 0

(M − κnF )du + (N − κnG)dv = 0 (3.22)

These equations can be simultaneously satisfied if and only if
∣

∣

∣

∣

∣

L − κnE M − κnF

M − κnF N − κnG

∣

∣

∣

∣

∣

= 0 (3.23)

where | | denotes the determinant of a matrix. Expanding and defining K and H as

K =
LN − M2

EG − F 2
(3.24)

H =
EN + GL − 2FM

2(EG − F 2)
(3.25)

we obtain a quadratic equation for κn as follows:

κ2
n − 2Hκn + K = 0 (3.26)

The values K and H are called Gauss (Gaussian) and mean curvature respectively. The
discriminant D can be expressed as follows:

D = H2 − K

=
(EN + GL − 2FM)2 − 4(EG − F 2)(LN − M 2)

4(EG − F 2)2

The denominator is always positive, so we only need to investigate the numerator. The numer-
ator can be written as:

(EN + GL − 2FM)2 − 4(EG − F 2)(LN − M 2)

= 4

(

EG − F 2

E2

)

(EM − FL)2 + [EN − GL − 2F

E
(EM − FL)]2 ≥ 0
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Thus, D ≥ 0.
Upon solving Equation (3.26) for the extreme values of curvature, we have:

κmax = H +
√

H2 − K (3.27)

κmin = H −
√

H2 − K (3.28)

From Equations (3.27), (3.28), it is readily seen that

K = κmaxκmin (3.29)

H =
κmax + κmin

2
(3.30)

From Equation (3.24) (since EG − F 2 > 0, see Equation 3.6).

K > 0 ⇒ LN > M 2 ⇒ Elliptic point

K = 0 ⇒ LN = M 2 ⇒ Parabolic point

K < 0 ⇒ LN < M 2 ⇒ Hyperbolic point

K=0

K>0

K<0

Figure 3.12: Curvature map of a torus showing elliptic, parabolic, and hyperbolic regions.
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