$13.472 \mathrm{~J} / 1.128 \mathrm{~J} / 2.158 \mathrm{~J} / 16.940 \mathrm{~J}$ COMPUTATIONAL GEOMETRY

Lecture 3

Kwanghee Ko
T. Maekawa
N. M. Patrikalakis
Massachusetts Institute of Technology
Cambridge, MA 02139-4307, USA
Copyright © 2003 Massachusetts Institute of Technology

Contents

3 Differential geometry of surfaces 2
3.1 Definition of surfaces 2
3.2 Curves on a surface 3
3.3 First fundamental form (arc length) 4
3.4 Tangent plane 6
3.5 Normal vector 6
3.6 Second fundamental form II (curvature) 8
3.7 Principal curvatures 11
Bibliography 13
Reading in the Textbook

- Chapter 3, pp. 49 - pp. 72

Lecture 3

Differential geometry of surfaces

3.1 Definition of surfaces

- Implicit surfaces $F(x, y, z)=0$

Example: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ Ellipsoid, see Figure 3.1.

Figure 3.1: Ellipsoid.

- Explicit surfaces

If the implicit equation $F(x, y, z)=0$ can be solved for one of the variables as a function of the other two, we obtain an explicit surface, as shown in Figure 3.2. Example: $z=$ $\frac{1}{2}\left(\alpha x^{2}+\beta y^{2}\right)$

- Parametric surfaces $\quad x=x(u, v), y=y(u, v), z=z(u, v)$

Here functions $x(u, v), y(u, v), z(u, v)$ have continuous partial derivatives of the $r^{t h}$ order, and the parameters u and v are restricted to some intervals (i.e., $u_{1} \leq u \leq u_{2}, v_{1} \leq v \leq v_{2}$) leading to parametric surface patches. This rectangular domain D of u, v is called parametric space and it is frequently the unit square, see Figure 3.3. If derivatives of the surface are continuous up to the $r^{t h}$ order, the surface is said to be of class r, denoted C^{r}.

Figure 3.2: Explicit quadratic surfaces $z=\frac{1}{2}\left(\alpha x^{2}+\beta y^{2}\right)$. (a) Left: Hyperbolic paraboloid $(\alpha=-3, \beta=1)$. (b) Right: Elliptic paraboloid $(\alpha=1, \beta=3)$.

In vector notation:

$$
\begin{aligned}
& \mathbf{r}=\mathbf{r}(u, v) \\
& \text { where } \quad \mathbf{r}=(x, y, z), \quad \mathbf{r}(u, v)=(x(u, v), y(u, v), z(u, v))
\end{aligned}
$$

Example:

$$
\left.\begin{array}{rl}
\mathbf{r} & =\left(u+v, u-v, u^{2}+v^{2}\right) \\
x & =u+v \\
y & =u-v \\
z & =u^{2}+v^{2}
\end{array}\right\} \Rightarrow \text { eliminate } u, v \Rightarrow z=\frac{1}{2}\left(x^{2}+y^{2}\right) \text { paraboloid }
$$

3.2 Curves on a surface

Let $\mathbf{r}=\mathbf{r}(u, v)$ be the equation of a surface, defined on a domain D (i.e., $u_{1} \leq u \leq u_{2}$, $\left.v_{1} \leq v \leq v_{2}\right)$. Let $\beta(t)=(u(t), v(t))$ be a curve in the parameter plane. Then $\mathbf{r}=\mathbf{r}(u(t), v(t))$ is a curve lying on the surface, see Figure 3.3. A tangent vector of curve $\beta(t)$ is given by $\dot{\beta}(t)=(\dot{u}(t), \dot{v}(t))$ A tangent vector of a curve on a surface is given by:

$$
\begin{equation*}
\frac{d \mathbf{r}(u(t), v(t))}{d t} \tag{3.1}
\end{equation*}
$$

By using the chain rule:

$$
\begin{equation*}
\frac{d \mathbf{r}(u(t), v(t))}{d t}=\frac{\partial \mathbf{r}}{\partial u} \frac{d u}{d t}+\frac{\partial \mathbf{r}}{\partial v} \frac{d v}{d t}=\mathbf{r}_{u} \dot{u}(t)+\mathbf{r}_{v} \dot{v}(t) \tag{3.2}
\end{equation*}
$$

Figure 3.3: The mapping of a curve in 2D parametric space onto a 3D biparametric surface

3.3 First fundamental form (arc length)

Consider a curve on a surface $\mathbf{r}=\mathbf{r}(u(t), v(t))$. The arc length of the curve on a surface is given by

$$
\begin{align*}
d s & =\left|\frac{d \mathbf{r}}{d t}\right| d t=\left|\mathbf{r}_{u} \frac{d u}{d t}+\mathbf{r}_{v} \frac{d v}{d t}\right| d t \\
& =\sqrt{\left(\mathbf{r}_{u} \dot{u}+\mathbf{r}_{v} \dot{v}\right) \cdot\left(\mathbf{r}_{u} \dot{u}+\mathbf{r}_{v} \dot{v}\right)} d t \\
& =\sqrt{\left(\mathbf{r}_{u} \cdot \mathbf{r}_{u}\right) d u^{2}+2 \mathbf{r}_{u} \mathbf{r}_{v} d u d v+\left(\mathbf{r}_{v} \cdot \mathbf{r}_{v}\right) d v^{2}} \\
& =\sqrt{E d u^{2}+2 F d u d v+G d v^{2}} \tag{3.3}
\end{align*}
$$

where

$$
\begin{equation*}
E=\mathbf{r}_{u} \cdot \mathbf{r}_{u}, \quad F=\mathbf{r}_{u} \cdot \mathbf{r}_{v}, \quad G=\mathbf{r}_{v} \cdot \mathbf{r}_{v} \tag{3.4}
\end{equation*}
$$

The first fundamental form is defined as

$$
\begin{align*}
I & =d \mathbf{r} \cdot d \mathbf{r}=\left(\mathbf{r}_{u} d u+\mathbf{r}_{v} d v\right) \cdot\left(\mathbf{r}_{u} d u+\mathbf{r}_{v} d v\right) \\
& =E d u^{2}+2 F d u d v+G d v^{2} \tag{3.5}
\end{align*}
$$

E, F, G are called first fundamental form coefficients Note that $E=\mathbf{r}_{u} \cdot \mathbf{r}_{u}>0$ and $G=$ $\mathbf{r}_{v} \cdot \mathbf{r}_{v}>0$ if $\mathbf{r}_{u} \neq 0$ and $\mathbf{r}_{v} \neq 0$. The first fundamental form I is positive definite. That is $I \geq 0$ and $I=0$ if and only if $d u=0$ and $d v=0$ since

$$
I=\frac{1}{E}(E d u+F d v)^{2}+\frac{E G-F^{2}}{E} d v^{2} \text { and } E G-F^{2}=\left|r_{u} \times r_{v}\right|^{2}>0 .
$$

I depends only on the surface and not on the parametrization. The area of the surface can be derived as follows:

Figure 3.4: Area of an infinitessimal surface patch.

$$
\begin{aligned}
& \mathbf{r}\left(u_{0}, v_{0}+\delta v\right)-\mathbf{r}\left(u_{0}, v_{0}\right) \simeq \frac{\partial \mathbf{r}}{\partial v} \delta v \\
& \mathbf{r}\left(u_{0}+\delta u, v_{0}\right)-\mathbf{r}\left(u_{0}, v_{0}\right) \simeq \frac{\partial \mathbf{r}}{\partial u} \delta u \\
& \delta A=\left|\mathbf{r}_{u} \delta u \times \mathbf{r}_{v} \delta v\right|=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| \delta u \delta v \\
&\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|^{2}=\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right)
\end{aligned}
$$

Using the vector identity $(a \times b) \cdot(c \times d)=(a \cdot c)(b \cdot d)-(a \cdot d)(b \cdot c)$, we get

$$
\begin{align*}
\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|^{2}= & \left(\mathbf{r}_{u} \cdot \mathbf{r}_{u}\right)\left(\mathbf{r}_{v} \cdot \mathbf{r}_{v}\right)-\left(\mathbf{r}_{u} \cdot \mathbf{r}_{v}\right)^{2} \tag{3.6}\\
= & E G-F^{2} \tag{3.7}\\
\delta A=\sqrt{E G-F^{2}} \delta u \delta v, \quad & A=\iint \sqrt{E G-F^{2}} d u d v \tag{3.8}
\end{align*}
$$

Example: For the hyperbolic paraboloid $\mathbf{r}(u, v)=\left(u, v, u^{2}-v^{2}\right)$, let us derive an expression for the area of a region of its surface corresponding to a the circle $u^{2}+v^{2} \leq 1$ in the parametric domain D.

We begin by forming expressions for the derivatives of the position vector \mathbf{r} and the first fundamental form coeffients.

$$
\begin{aligned}
\mathbf{r}_{u} & =(1,0,2 u) \\
\mathbf{r}_{v} & =(0,1,-2 v) \\
E & =\mathbf{r}_{u} \cdot \mathbf{r}_{u}=1+4 u^{2} \\
F & =\mathbf{r}_{u} \cdot \mathbf{r}_{v}=-4 u v \\
G & =\mathbf{r}_{v} \cdot \mathbf{r}_{v}=1+4 v^{2}
\end{aligned}
$$

Using Equation (3.8), we find

$$
\begin{aligned}
E G-F^{2} & =\left(1+4 u^{2}\right)\left(1+4 v^{2}\right)-16 u^{2} v^{2}=1+4 u^{2}+4 v^{2}>0 \\
A & =\iint_{D} \sqrt{1+4 u^{2}+4 v^{2}} d u d v
\end{aligned}
$$

To compute the area, we need to evaluate the double integral over the unit disk $u^{2}+v^{2} \leq 1$ in the parametric domain D;

$$
A=\iint_{u^{2}+v^{2} \leq 1} \sqrt{1+4 u^{2}+4 v^{2}} d u d v
$$

To perform the integration, let us change variables.

$$
\begin{aligned}
u & =r \cos (\theta), v=r \sin (\theta), \text { and } d u d v=r d r d \theta \\
A & =\iint_{r \leq 1} \sqrt{1+4 r^{2}} r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{1+4 r^{2}} r d r d \theta \\
& =\frac{\pi}{6}(5 \sqrt{5}-1)
\end{aligned}
$$

3.4 Tangent plane

Tangent plane at a point $\mathbf{r}\left(u_{o}, v_{o}\right)$ is the union of tangent vectors of all curves on the surface pass through $\mathbf{r}\left(u_{o}, v_{o}\right)$, as shown in Figure 3.5. Since the tangent vector of a curve on a parametric surface is given by $\frac{d \mathbf{r}}{d t}=\mathbf{r}_{u} \frac{d u}{d t}+\mathbf{r}_{v} \frac{d v}{d t}$, the tangent plane lies on the plane of the vectors \mathbf{r}_{u} and \mathbf{r}_{v}. The equation of the tangent plane is

$$
\begin{equation*}
\mathbf{T}_{p}(u, v)=\mathbf{r}(u, v)+\lambda \mathbf{r}_{u}(u, v)+\mu \mathbf{r}_{v}(u, v) \tag{3.9}
\end{equation*}
$$

where λ and μ are real variables parameterizing the plane.

Figure 3.5: The tangent plane at a point on a surface.

3.5 Normal vector

The surface normal is the vector at point $\mathbf{r}\left(u_{o}, v_{o}\right)$ perpendicular to the tangent plane, see Figure 3.6. And therefore

$$
\begin{equation*}
\mathbf{N}=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|} \tag{3.10}
\end{equation*}
$$

Note that \mathbf{r}_{u} and \mathbf{r}_{v} are not necessarily perpendicular.

Figure 3.6: The normal to the point on a surface.

A regular (ordinary) point \mathbf{P} on the surface is defined as one for which $\mathbf{r}_{u} \times \mathbf{r}_{v} \neq \mathbf{0}$. A point where $\mathbf{r}_{u} \times \mathbf{r}_{v}=\mathbf{0}$ is called a singular point. The condition $\mathbf{r}_{u} \times \mathbf{r}_{v} \neq \mathbf{0}$ requires that at that point \mathbf{P} the vectors \mathbf{r}_{u} and \mathbf{r}_{v} do not vanish and have different directions.

Example: Elliptic Paraboloid $\mathbf{r}(u, v)=\left(u+v, u-v, u^{2}+v^{2}\right)$

$$
\begin{aligned}
\mathbf{r}_{u} & =(1,1,2 u) \\
\mathbf{r}_{v} & =(1,-1,2 v) \\
\mathbf{r}_{u} \times \mathbf{r}_{v}= & \left|\begin{array}{ccc}
\mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\
1 & 1 & 2 u \\
1 & -1 & 2 v
\end{array}\right| \\
= & 2(u+v) \mathbf{e}_{x}+2(u-v) \mathbf{e}_{y}-2 \mathbf{e}_{z} \neq \mathbf{0} \\
\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|= & 2 \sqrt{(u+v)^{2}+(u-v)^{2}+1} \\
= & 2 \sqrt{2 u^{2}+2 v^{2}+1}>0 \Rightarrow \text { Regular ! } \\
\mathbf{N}= & \frac{(2(u+v), 2(u-v),-2)}{2 \sqrt{2 u^{2}+2 v^{2}+1}} \\
= & \frac{(u+v, u-v,-1)}{\sqrt{2 u^{2}+2 v^{2}+1}} \\
& \text { at }(u, v)=(0,0), \mathbf{N}=(0,0,-1)
\end{aligned}
$$

Example: Circular Cone $\mathbf{r}(u, v)=(u \sin \alpha \cos v, u \sin \alpha \sin v, u \cos \alpha)$, see Figure 3.7

$$
\begin{aligned}
\mathbf{r}_{u} & =(\sin \alpha \cos v, \sin \alpha \sin v, \cos \alpha) \\
\mathbf{r}_{v} & =(-u \sin \alpha \sin v, u \sin \alpha \sin v, 0) \\
\mathbf{r}_{u} \times \mathbf{r}_{v} & =\left|\begin{array}{ccc}
\mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\
\sin \alpha \cos v & \sin \alpha \sin v & \cos \alpha \\
-u \sin \alpha \sin v & u \sin \alpha \cos v & 0
\end{array}\right|
\end{aligned}
$$

Figure 3.7: Circular cone.

$$
=-u \sin \alpha \cos \alpha \cos v \mathbf{e}_{x}-u \sin \alpha \cos \alpha \sin v \mathbf{e}_{y}+u \sin ^{2} \alpha \mathbf{e}_{z}
$$

At the origin $\mathbf{n}=0$,

$$
\mathbf{r}_{u} \times \mathbf{r}_{v}=\mathbf{0}
$$

Therefore, the apex of the cone is a singular point.

3.6 Second fundamental form $I I$ (curvature)

Figure 3.8: Definition of normal curvature
In order to quantify the curvatures of a surface S, we consider a curve C on S which passes through point P as shown in Figure 3.8. \mathbf{t} is the unit tangent vector and \mathbf{n} is the unit normal vector of the curve C at point P.

$$
\begin{align*}
& \frac{d \mathbf{t}}{d s}=\kappa \mathbf{n}=\mathbf{k}_{n}+\mathbf{k}_{g} \tag{3.11}\\
& \mathbf{k}_{n}=\kappa_{n} \mathbf{N} \tag{3.12}
\end{align*}
$$

where \mathbf{k}_{n} is the normal curvature vector normal to the surface, \mathbf{k}_{g} is the geodesic curvature vector tangent to the surface, and $\mathbf{k}=\kappa \mathbf{n}$ is the curvature vector of the curve C at point \mathbf{P}. κ_{n} is called the normal curvature of the surface at \mathbf{P} in the direction \mathbf{t}.

Meusnier's Theorem : All curves lying on a surface S passing through a given point $p \in S$ with the same tangent line have the same normal curvature at this point.

Since $\mathbf{N} \cdot \mathbf{t}=0$, differentiate w.r.t. s

$$
\begin{align*}
\frac{d}{d s}(\mathbf{N} \cdot \mathbf{t}) & =\mathbf{N}^{\prime} \cdot \mathbf{t}+\mathbf{N} \cdot \mathbf{t}^{\prime} \\
\frac{d \mathbf{t}}{d s} \cdot \mathbf{N} & =-\mathbf{t} \cdot \frac{d \mathbf{N}}{d s}=-\frac{d \mathbf{r}}{d s} \cdot \frac{d \mathbf{N}}{d s} \tag{3.13}
\end{align*}
$$

Recoginizing that $d s \cdot d s=d x^{2}+d y^{2}+d z^{2}=d \mathbf{r} \cdot d \mathbf{r}$, we can rewrite Equation 3.13 as:

$$
\begin{aligned}
\frac{d \mathbf{t}}{d s} \cdot \mathbf{N} & =-\frac{d \mathbf{r} \cdot d \mathbf{N}}{d \mathbf{r} \cdot d \mathbf{r}} \\
\text { while } \frac{d \mathbf{t}}{d s} \cdot \mathbf{N} & =\kappa \mathbf{n} \cdot \mathbf{N} \equiv \kappa_{n}
\end{aligned}
$$

Figure 3.9: Definition of positive normal: (a) $\kappa \mathbf{n} \cdot \mathbf{N}=\kappa_{n}$; (b) $\kappa \mathbf{n} \cdot \mathbf{N}=-\kappa_{n}$.

$$
\begin{align*}
I I & =-d \mathbf{r} \cdot d \mathbf{N}=-\left(\mathbf{r}_{u} d u+\mathbf{r}_{v} d v\right) \cdot\left(\mathbf{N}_{u} d u+\mathbf{N}_{v} d v\right) \\
& =L d u^{2}+2 M d u d v+N d v^{2} \tag{3.14}
\end{align*}
$$

where

$$
\begin{equation*}
L=\mathbf{N} \cdot \mathbf{r}_{u u}, \quad M=\mathbf{N} \cdot \mathbf{r}_{u v}, \quad N=\mathbf{N} \cdot \mathbf{r}_{v v} \tag{3.15}
\end{equation*}
$$

Therefore the normal curvature is given by

$$
\begin{equation*}
\kappa_{n}=\frac{I I}{I}=\frac{L+2 M \lambda+N \lambda^{2}}{E+2 F \lambda+G \lambda^{2}} \tag{3.16}
\end{equation*}
$$

where $\lambda=\frac{d v}{d u}$.
Suppose P is a point on a surface and Q is a point in the neighborhood of P, as in Figure 3.10. Taylor's expansion gives

$$
\begin{equation*}
\mathbf{r}(u+d u, v+d v)=\mathbf{r}(u, v)+\mathbf{r}_{u} d u+\mathbf{r}_{v} d v+\frac{1}{2}\left(\mathbf{r}_{u u} d u^{2}+2 \mathbf{r}_{u v} d u d v+\mathbf{r}_{v v} d v^{2}\right)+\text { H.O.T. } \tag{3.17}
\end{equation*}
$$

Figure 3.10: Geometrical illustration of the second fundamental form.

Therefore

$$
\mathbf{P Q}=\mathbf{r}(u+d u, v+d v)-\mathbf{r}(u, v)=\mathbf{r}_{u} d u+\mathbf{r}_{v} d v+\frac{1}{2}\left(\mathbf{r}_{u u} d u^{2}+2 \mathbf{r}_{u v} d u d v+\mathbf{r}_{v v} d v^{2}\right)+\text { H.O.T. }
$$

Thus, the projection of $\mathbf{P Q}$ onto \mathbf{N}

$$
d=\mathbf{P Q} \cdot \mathbf{N}=\left(\mathbf{r}_{u} d u+\mathbf{r}_{v} d v\right) \cdot \mathbf{N}+\frac{1}{2} I I
$$

and since $\mathbf{r}_{u} \cdot \mathbf{N}=\mathbf{r}_{v} \cdot \mathbf{N}=0$, we get

$$
d=\frac{1}{2} I I=\frac{1}{2}\left(L d u^{2}+2 M d u d v+N d v^{2}\right)
$$

We want to observe in which situation d is positive and negative. When $d=0$

$$
L d u^{2}+2 M d u d v+N d v^{2}=0
$$

Solve for $d u$

$$
\begin{equation*}
d u=\frac{-M \pm \sqrt{(M d v)^{2}-L N d v^{2}}}{L}=\frac{-M \pm \sqrt{M^{2}-L N}}{L} d v \tag{3.18}
\end{equation*}
$$

Figure 3.11: (a) Elliptic point; (b) Parabolic point; (c) Hyperbolic point.

- If $M^{2}-L N<0$, there is no real root. That means there is no intersection between the surface and its tangent plane except at point $P . P$ is called elliptic point (Figure 3.11(a)).
- If $M^{2}-L N=0$, there is a double root. The surface intersects its tangent plane with one line $d u=-\frac{M}{L} d v$, which passes through point $P . P$ is called parabolic point (Figure 3.11(b)).
- If $M^{2}-L N>0$, there are two roots. The surface intersects its tangent plane with two lines $d u=\frac{-M \pm \sqrt{M^{2}-L N}}{L} d v$, which intersect at point $P . \quad P$ is called hyperbolic point (Figure 3.11(c)).

3.7 Principal curvatures

The extreme values of κ_{n} can be obtained by evaluating $\frac{d \kappa_{n}}{d \lambda}=0$ of Equation 3.16, which gives:

$$
\begin{equation*}
\left(E+2 F \lambda+G \lambda^{2}\right)(N \lambda+M)-\left(L+2 M \lambda+N \lambda^{2}\right)(G \lambda+F)=0 \tag{3.19}
\end{equation*}
$$

Since

$$
\begin{aligned}
E+2 F \lambda+G \lambda^{2} & =(E+F \lambda)+\lambda(F+G \lambda) \\
L+2 M \lambda+N \lambda^{2} & =(L+M \lambda)+\lambda(M+N \lambda)
\end{aligned}
$$

equation (3.19) can be reduced to

$$
\begin{equation*}
(E+F \lambda)(M+N \lambda)=(L+M \lambda)(F+G \lambda) \tag{3.20}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\kappa_{n}=\frac{L+2 M \lambda+N \lambda^{2}}{E+2 F \lambda+G \lambda^{2}}=\frac{M+N \lambda}{F+G \lambda}=\frac{L+M \lambda}{E+F \lambda} \tag{3.21}
\end{equation*}
$$

Therefore κ_{n} satisfies the two simultaneous equations

$$
\begin{align*}
\left(L-\kappa_{n} E\right) d u+\left(M-\kappa_{n} F\right) d v & =0 \\
\left(M-\kappa_{n} F\right) d u+\left(N-\kappa_{n} G\right) d v & =0 \tag{3.22}
\end{align*}
$$

These equations can be simultaneously satisfied if and only if

$$
\left|\begin{array}{cc}
L-\kappa_{n} E & M-\kappa_{n} F \tag{3.23}\\
M-\kappa_{n} F & N-\kappa_{n} G
\end{array}\right|=0
$$

where $|\mid$ denotes the determinant of a matrix. Expanding and defining K and H as

$$
\begin{align*}
K & =\frac{L N-M^{2}}{E G-F^{2}} \tag{3.24}\\
H & =\frac{E N+G L-2 F M}{2\left(E G-F^{2}\right)} \tag{3.25}
\end{align*}
$$

we obtain a quadratic equation for κ_{n} as follows:

$$
\begin{equation*}
\kappa_{n}^{2}-2 H \kappa_{n}+K=0 \tag{3.26}
\end{equation*}
$$

The values K and H are called Gauss (Gaussian) and mean curvature respectively. The discriminant D can be expressed as follows:

$$
\begin{aligned}
D & =H^{2}-K \\
& =\frac{(E N+G L-2 F M)^{2}-4\left(E G-F^{2}\right)\left(L N-M^{2}\right)}{4\left(E G-F^{2}\right)^{2}}
\end{aligned}
$$

The denominator is always positive, so we only need to investigate the numerator. The numerator can be written as:

$$
\begin{array}{r}
(E N+G L-2 F M)^{2}-4\left(E G-F^{2}\right)\left(L N-M^{2}\right) \\
=4\left(\frac{E G-F^{2}}{E^{2}}\right)(E M-F L)^{2}+\left[E N-G L-\frac{2 F}{E}(E M-F L)\right]^{2} \geq 0
\end{array}
$$

Thus, $D \geq 0$.
Upon solving Equation (3.26) for the extreme values of curvature, we have:

$$
\begin{align*}
\kappa_{\max } & =H+\sqrt{H^{2}-K} \tag{3.27}\\
\kappa_{\min } & =H-\sqrt{H^{2}-K} \tag{3.28}
\end{align*}
$$

From Equations (3.27), (3.28), it is readily seen that

$$
\begin{align*}
K & =\kappa_{\max } \kappa_{\min } \tag{3.29}\\
H & =\frac{\kappa_{\max }+\kappa_{\min }}{2} \tag{3.30}
\end{align*}
$$

From Equation (3.24) (since $E G-F^{2}>0$, see Equation 3.6).

$$
\begin{aligned}
& K>0 \Rightarrow L N>M^{2} \Rightarrow \text { Elliptic point } \\
& K=0 \Rightarrow L N=M^{2} \Rightarrow \text { Parabolic point } \\
& K<0 \Rightarrow L N<M^{2} \Rightarrow \text { Hyperbolic point }
\end{aligned}
$$

Figure 3.12: Curvature map of a torus showing elliptic, parabolic, and hyperbolic regions.

Bibliography

[1] P. M. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1976.
[2] E. Kreyszig. Differential Geometry. University of Toronto Press, Toronto, 1959.
[3] M. M. Lipschutz. Theory and Problems of Differential Geometry. Schaum's Outline Series: McGraw-Hill, 1969.
[4] D. J. Struik. Lectures on Classical Differential Geometry. Addison-Wesley, Cambridge, MA, 1950.
[5] T. J. Willmore. An Introduction to Differential Geometry. Clarendon Press, Oxford, 1959.

