$13.472 \mathrm{~J} / 1.128 \mathrm{~J} / 2.158 \mathrm{~J} / 16.940 \mathrm{~J}$ COMPUTATIONAL GEOMETRY

Lecture 2

Kwanghee Ko
T. Maekawa
N. M. Patrikalakis
Massachusetts Institute of Technology
Cambridge, MA 02139-4307, USA
Copyright © 2003 Massachusetts Institute of Technology

Contents

2 Differential geometry of curves 2
2.1 Definition of curves 2
2.1.1 Plane curves 2
2.1.2 Space curves 4
2.2 Arc length 7
2.3 Tangent vector 8
2.4 Normal vector and curvature 10
2.5 Binormal vector and torsion 12
2.6 Serret-Frenet Formulae 13
Bibliography 16

Reading in the Textbook

- Chapter 1, pp. 1 - pp. 3
- Chapter 2, pp. 36 - pp. 48

Lecture 2

Differential geometry of curves

2.1 Definition of curves

2.1.1 Plane curves

- Implicit curves $f(x, y)=0$

Example: $x^{2}+y^{2}=a^{2}$

- It is difficult to trace implicit curves.
- It is easy to check if a point lies on the curve.
- Multi-valued and closed curves can be represented.
- It is easy to evaluate tangent line to the curve when the curve has a vertical or near vertical tangent.
- Axis dependent. (Difficult to transform to another coordinate system).

Example: $x^{3}+y^{3}=3 x y$: Folium of Descartes (see Figure 2.1a)

$$
\text { Let } \begin{aligned}
f(x, y) & =x^{3}+y^{3}-3 x y=0 \\
f(0,0) & =0 \Rightarrow(x, y)=(0,0) \quad \text { lies on the curve }
\end{aligned}
$$

Example: If we translate by (1,2) and rotate the axes by $\theta=\operatorname{atan}\left(\frac{3}{4}\right)$, the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{2}=1$, shown in Figure 2.1(b), will become $2 x^{2}-72 x y+23 y^{2}+140 x-20 y+50=0$.

- Explicit curves $y=f(x)$

One of the variables is expressed in terms of the other.
Example: $y=x^{2}$

- It is easy to trace explicit curves.
- It is easy to check if a point lies on the curve.
- Multi-valued and closed curves can not be easily represented.
- It is difficult to evaluate tangent line to the curve when the curve has a vertical or near vertical tangent.

Figure 2.1: (a) Descartes; (b) Hyperbola.

- Axis dependent. (Difficult to transform to another coordinate system).

Example: If the circle is represented by an explicit equation, it must be divided into two segments, with $y=+\sqrt{r^{2}-x^{2}}$ for the upper half and $y=-\sqrt{r^{2}-x^{2}}$ for the lower half, see Figure 2.2. This kind of segmentation creates cases which are inconvenient in computer programming and graphics.

Figure 2.2: Description of a circle with an explicit equation.

Note: The derivative of $y=\sqrt{x}$ at the origin $x=0$ is infinite, see Figure 2.3.

- Parametric curves $x=x(t), y=y(t), t_{1} \leq t \leq t_{2}$
$2 D$ coordinates (x, y) can be expressed as functions of a parameter t.

Example: $x=a \cos (t), \quad y=a \sin (t), \quad 0 \leq t<2 \pi$

Figure 2.3: Vertical slopes for explicit curves involve non-polynomial functions.

- It is easy to trace parametric curves.
- It is relatively difficult to check if a point lies on the curve.
- Closed and multi-valued curves are easy to represent.
- It is easy to evaluate tangent line to the curve when the curve has a vertical or near vertical tangent.
- Axis independent. (Easy to transform to another coordinate system)

Example: Folium of Descartes, see Figure 2.1, can be expressed as:
$\mathbf{r}(t)=\left(\frac{3 t}{1+t^{3}}, \frac{3 t^{2}}{1+t^{3}}\right) \quad-\infty<t<\infty \quad \Rightarrow$ easy to trace
$x(t)=x_{0} \Rightarrow$ solve for $t \Rightarrow$ plug t into $y(t)=y_{0} \quad \Rightarrow$ need to solve a nonlinear equation to check if a point lies on the curve.

Explicit curve $y=\sqrt{x}$ can be expressed as $x=t^{2}, y=t(t \geq 0)$.

$$
\begin{aligned}
& \mathbf{r}=\left(t^{2}, t\right), \quad \dot{\mathbf{r}}=(2 t, 1) \\
& \text { unit tangent vector } \quad \mathbf{t}=\frac{(2 t, 1)}{\sqrt{4 t^{2}+1}} \\
& \text { at } t=0, \mathbf{t}=(0,1)
\end{aligned}
$$

Therefore there is no problem representing a vertical tangent computationally.

2.1.2 Space curves

- Implicit curves

In 3 D , a single equation generally represents a surface. For example $x^{2}+y^{2}+z^{2}=a^{2}$ is a sphere.

Thus, the curve appears as the intersection of two surfaces.

$$
F(x, y, z)=0 \cap G(x, y, z)=0
$$

Example: Intersection of the two quadric surfaces $z=x y$ and $y^{2}=z x$ gives cubic parabola. (These two surfaces intersect not only along the cubic parabola but also along the x-axis.)

- Explicit curves

If the implicit equations can be solved for two of the variables in terms of the third, say for y and z in terms of x, we get

$$
y=y(x), \quad z=z(x)
$$

Each of the equations separately represents a cylinder projecting the curve onto one of the coordinate planes. Therefore intersection of the two cylinders represents the curve.
Example: Intersection of the two cylinders $y=x^{2}, z=x^{3}$ gives a cubic parabola.

- Parametric curves $x=x(t), y=y(t), z=z(t), t_{1} \leq t \leq t_{2}$

The 3D coordinates (x, y, z) of the point can be expressed on functions of parameter t. Here functions $x(t), y(t), z(t)$ have continuous derivatives of the r th order, and the parameter t is restricted to some interval called the parameter space (i.e., $t_{1} \leq t \leq t_{2}$). In this case the curve is said to be of class r, denoted as C^{r}.
In vector notation:

$$
\begin{aligned}
& \mathbf{r}=\mathbf{r}(t) \\
& \text { where } \quad \mathbf{r}=(x, y, z), \quad \mathbf{r}(t)=(x(t), y(t), z(t))
\end{aligned}
$$

Example: Cubic parabola

$$
x=t, \quad y=t^{2}, \quad z=t^{3}
$$

Example: Circular helix, see Fig. 2.4.

$$
x=a \cos (t), \quad y=a \sin (t), \quad z=b t, \quad 0 \leq t \leq \pi
$$

Using $v=\tan \frac{t}{2}$

$$
\begin{gathered}
v=\tan \frac{t}{2}=\sqrt{\frac{1-\cos t}{1+\cos t}} \Rightarrow v^{2}=\frac{1-\cos t}{1+\cos t} \\
\Rightarrow \cos t=\frac{1-v^{2}}{1+v^{2}} \Rightarrow \sin t=\frac{2 v}{1+v^{2}}
\end{gathered}
$$

Therefore the following parametrization will give the same circular helix.

$$
\mathbf{r}=\left(a \frac{1-v^{2}}{1+v^{2}}, \quad \frac{2 a v}{1+v^{2}}, \quad 2 b t a n^{-1} v\right), \quad 0 \leq v<\infty
$$

$$
\begin{aligned}
& \gg \\
& \gg \mathrm{a}=2 ; \\
& \gg \mathrm{b}=3 ; \\
& \gg \mathrm{u}=\left[0: 6^{*} \mathrm{pi} / 100: 6^{*} \mathrm{pi}\right] ; \\
& \gg \operatorname{plot} 3\left(\mathrm{a}^{*} \cos (\mathrm{u}), \mathrm{a} *^{*} \sin (\mathrm{u}), \mathrm{b} *^{*} \mathrm{u}\right) \\
& \gg \operatorname{xlabel}(\text { 'X'); } \\
& \gg \text { ylabel('Y'); } \\
& \gg \text { zlabel('Z'); } \\
& \gg \operatorname{print}(' \operatorname{circHelix.ps')}
\end{aligned}
$$

Figure 2.4: Circular helix plotted using MATLAB.

Figure 2.5: A segment $\Delta \mathbf{r}$ connecting two point \mathbf{p} and \mathbf{q} on a parametric curve $\mathbf{r}(t)$.

2.2 Arc length

From Figure 2.5, we will derive an expression for the differential arc length $d s$ of a parametric curve. First, let us express the vector $\Delta \mathbf{r}$ connecting two points \mathbf{p} and \mathbf{q} on an arc at parametric locations t and $t+\Delta t$, respectively, as

$$
\Delta \mathbf{r}=\mathbf{p}-\mathbf{q}=\mathbf{r}(t+\Delta t)-\mathbf{r}(t) .
$$

As \mathbf{p} and \mathbf{q} become infinitesimally close, the length of the segment connecting the two points approaches the arc length between the two points along the curve, $\mathbf{r}(t)$ and $\mathbf{r}(t+\Delta t)$. Or using Taylor's expansion on the norm (length) of the segment $\Delta \mathbf{r}$ and letting $\Delta t \rightarrow 0$, we can express the differential arc length as

$$
\Delta s \simeq|\Delta \mathbf{r}|=|\mathbf{r}(t+\Delta t)-\mathbf{r}(t)|=\left|\frac{d \mathbf{r}}{d t} \Delta t+O\left(\Delta t^{2}\right)\right| \simeq\left|\frac{d \mathbf{r}}{d t}\right| \Delta t
$$

Thus as $\Delta t \rightarrow 0$

$$
d s=\left|\frac{d \mathbf{r}}{d t}\right| d t=|\dot{\mathbf{r}}| d t .
$$

Definitions

$$
\begin{gathered}
\frac{d}{d t} \equiv \\
\frac{d}{d s} \equiv
\end{gathered}
$$

Hence the rate of change $\frac{d s}{d t}$ of the arc length s with respect to the parameter t is

$$
\begin{equation*}
\frac{d s}{d t}=\sqrt{\dot{x}^{2}(t)+\dot{y}^{2}(t)+\dot{z}^{2}(t)} \tag{2.1}
\end{equation*}
$$

$\frac{d s}{d t}$ is called the parametric speed. It is, by definition, non-negative (s being measured always in the sense of increasing t).

If the parametric speed does not vary significantly, parameter values $t_{0}, t_{1}, \cdots, t_{N}$ corresponding to a uniform increment $\Delta t=t_{k}-t_{k-1}$, will be evenly distributed along the curve, as illustrated in Figure 2.6.

Figure 2.6: When parametric speed does not vary, parameter values are uniformly spaced along a parametric curve.

The arc length of a segment of the curve between points $\mathbf{r}\left(t_{o}\right)$ and $\mathbf{r}(t)$ can be obtained as follows:

$$
\begin{equation*}
s(t)=\int_{t_{o}}^{t} \sqrt{\dot{x}^{2}(t)+\dot{y}^{2}(t)+\dot{z}^{2}(t)} d t=\int_{t_{o}}^{t} \sqrt{\dot{\mathbf{r}} \cdot \dot{\mathbf{r}}} d t \tag{2.2}
\end{equation*}
$$

Derivatives of arc length s w.r.t. parameter t and vice versa :

$$
\begin{align*}
\dot{s} & =\frac{d s}{d t}=|\dot{\mathbf{r}}|=\sqrt{\dot{\mathbf{r}} \cdot \dot{\mathbf{r}}} \tag{2.3}\\
\ddot{s} & =\frac{d \dot{s}}{d t}=\frac{\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}}}{\sqrt{\dot{\mathbf{r}} \cdot \dot{\mathbf{r}}}} \tag{2.4}\\
\dddot{s} & =\frac{d \ddot{s}}{d t}=\frac{(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}})(\dot{\mathbf{r}} \cdot \dddot{\mathbf{r}}+\ddot{\mathbf{r}} \cdot \ddot{\mathbf{r}})-(\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}})^{2}}{(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}})^{\frac{3}{2}}} \tag{2.5}\\
t^{\prime} & =\frac{d t}{d s}=\frac{1}{|\dot{\mathbf{r}}|}=\frac{1}{\sqrt{\dot{\mathbf{r}} \cdot \dot{\mathbf{r}}}} \tag{2.6}\\
t^{\prime \prime} & =\frac{d t^{\prime}}{d s}=-\frac{\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}}}{(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}})^{2}} \tag{2.7}\\
t^{\prime \prime \prime} & =\frac{d t^{\prime \prime}}{d s}=-\frac{(\ddot{\mathbf{r}} \cdot \ddot{\mathbf{r}}+\dot{\mathbf{r}} \cdot \dddot{\mathbf{r}})(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}})-4(\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}})^{2}}{(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}})^{\frac{7}{2}}} \tag{2.8}
\end{align*}
$$

2.3 Tangent vector

The vector $\mathbf{r}(t+\Delta t)-\mathbf{r}(t)$ indicates the direction from $\mathbf{r}(t)$ to $\mathbf{r}(t+\Delta t)$. If we divide the vector by Δt and take the limit as $\Delta t \rightarrow 0$, then the vector will converge to the finite magnitude vector $\dot{\mathbf{r}}(t)$.
$\dot{\mathbf{r}}(t)$ is called the tangent vector.
Magnitude of the tangent vector

$$
\begin{equation*}
|\dot{\mathbf{r}}|=\frac{d s}{d t} \tag{2.9}
\end{equation*}
$$

Unit tangent vector

$$
\begin{equation*}
\mathbf{t}=\frac{\dot{\mathbf{r}}}{|\dot{\mathbf{r}}|}=\frac{\frac{d \mathbf{r}}{d t}}{\frac{d s}{d t}}=\frac{d \mathbf{r}}{d s} \equiv \mathbf{r}^{\prime} \tag{2.10}
\end{equation*}
$$

Definition : A parametric curve is said to be regular if $|\dot{\mathbf{r}}(t)| \neq 0$ for all $t \in I$. The points where $|\dot{\mathbf{r}}(t)|=0$ are called irregular (singular) points.

Note that at irregular points the parametric speed is zero.
Example: semi-cubical parabola $\mathbf{r}(t)=\left(t^{2}, t^{3}\right)$, see Figure 2.7

$$
\begin{aligned}
\dot{\mathbf{r}}(t)= & \left(2 t, 3 t^{2}\right) \\
|\dot{\mathbf{r}}(t)|= & \sqrt{4 t^{2}+9 t^{4}}=\sqrt{t^{2}\left(4+9 t^{2}\right)} \\
& \text { when } t=0,|\dot{\mathbf{r}}(t)|=0
\end{aligned}
$$

Figure 2.7: A singular point occurs on a semi-cubical parabola in the form of a cusp.
Here are some useful formulae for computing the unit tangent vector:

- 3D Parametric curve $\mathbf{r}(t)$

$$
\mathbf{t}=\mathbf{r}^{\prime}=\frac{d \mathbf{r}}{d s}=\frac{d \mathbf{r}}{d t} \frac{d t}{d s}=\frac{\dot{\mathbf{r}}}{|\dot{\mathbf{r}}|}=\frac{(\dot{x}, \dot{y}, \dot{z})}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}
$$

- 2D Implicit curve $f(x, y)=0$

$$
\mathbf{t}=\frac{\left(f_{y},-f_{x}\right)}{\sqrt{f_{x}^{2}+f_{y}^{2}}}
$$

- 2D Explicit curve $y=f(x)$

$$
\mathrm{t}=\frac{(1, \dot{f})}{\sqrt{1+\dot{f}^{2}}}
$$

Example: For a circular helix $\mathbf{r}(t)=(a \cos t, a \sin t, b t)$

- Parametric speed

$$
\begin{aligned}
\frac{d s}{d t} & =|\dot{\mathbf{r}}(t)|=\sqrt{\dot{x}^{2}(t)+\dot{y}^{2}(t)+\dot{z}^{2}(t)} \\
\dot{\mathbf{r}}(t) & =(-a \sin t, a \cos t, b) \\
|\dot{\mathbf{r}}(t)| & =\sqrt{a^{2}+b^{2}}=c=\text { const } \Rightarrow\left\{\begin{array}{l}
\text { The curve is regular and has } \\
\text { good parametrization }
\end{array}\right.
\end{aligned}
$$

- Unit tangent vector

$$
\begin{equation*}
\mathbf{t}=\frac{\dot{\mathbf{r}}}{|\dot{\mathbf{r}}|}=\left(-\frac{a}{c} \sin t, \frac{a}{c} \cos t, \frac{b}{c}\right) \tag{2.11}
\end{equation*}
$$

- Arc length

$$
\begin{equation*}
s(t)=\int_{0}^{t}|\dot{\mathbf{r}}| d t=\int_{0}^{t} \sqrt{a^{2}+b^{2}} d t=c t \tag{2.12}
\end{equation*}
$$

- Arc length parametrization

$$
\begin{align*}
t & =\frac{s}{c} \tag{2.13}\\
\mathbf{r}(s) & =\left(a \cos \frac{s}{c}, a \sin \frac{s}{c}, \frac{b s}{c}\right) \tag{2.14}\\
\text { check } & \tag{2.15}\\
\frac{d \mathbf{r}}{d s} & =\left(-\frac{a}{c} \sin \frac{s}{c}, \frac{a}{c} \cos \frac{s}{c}, \frac{b}{c}\right)=\mathbf{t} \tag{2.16}
\end{align*}
$$

2.4 Normal vector and curvature

Let us consider the second derivative $\mathbf{r}^{\prime \prime}(s)$, see Figure 2.8.

$$
\begin{equation*}
\mathbf{r}^{\prime \prime}(s)=\lim _{\Delta s \rightarrow 0} \frac{\mathbf{r}^{\prime}(s+\Delta s)-\mathbf{r}^{\prime}(s)}{\Delta s} \tag{2.17}
\end{equation*}
$$

As $\Delta s \rightarrow 0 \mathbf{r}^{\prime}(s+\Delta s)-\mathbf{r}^{\prime}(s)$ becomes perpendicular to the tangent vector i.e. normal direction.

Also $\left|\mathbf{r}^{\prime}(s+\Delta s)-\mathbf{r}^{\prime}(s)\right|=\Delta \theta \cdot 1=\Delta \theta$ as $\Delta s \rightarrow 0$.

Thus

$$
\begin{equation*}
\left|\mathbf{r}^{\prime \prime}(s)\right|=\lim _{\Delta s \rightarrow 0} \frac{\Delta \theta}{\Delta s}=\lim _{\Delta s \rightarrow 0} \frac{\frac{\Delta \theta}{\rho}}{\Delta \theta}=\frac{1}{\rho} \equiv \kappa \tag{2.18}
\end{equation*}
$$

Figure 2.8: Derivation of the normal vector of a curve.
κ is called the curvature. It follows that

$$
\begin{equation*}
\kappa^{2}=\mathbf{r}^{\prime \prime} \cdot \mathbf{r}^{\prime \prime} \tag{2.19}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\mathbf{r}^{\prime \prime}(s)=\mathbf{t}^{\prime}=\kappa \mathbf{n} \tag{2.20}
\end{equation*}
$$

Thus using equations (2.6) and (2.7), we obtain

$$
\begin{align*}
\kappa \mathbf{n} & =\frac{d^{2} \mathbf{r}}{d s^{2}}=\frac{d \mathbf{t}}{d s}=\frac{d}{d s}\left(\dot{\mathbf{r}} t^{\prime}\right)=\ddot{\mathbf{r}}\left(t^{\prime}\right)^{2}+\dot{\mathbf{r}} t^{\prime \prime}=\frac{(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}}) \ddot{\mathbf{r}}-(\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}}) \dot{\mathbf{r}}}{(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}})^{2}} \tag{2.21}\\
\kappa^{2} & =(\kappa \mathbf{n}) \cdot(\kappa \mathbf{n})=\left[\frac{(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}}) \ddot{\mathbf{r}}-(\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}}) \dot{\mathbf{r}}}{(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}})^{2}}\right] \cdot\left[\frac{(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}}) \dot{\mathbf{r}}-(\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}}) \dot{\mathbf{r}}}{(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}})^{2}}\right]=\frac{(\dot{\mathbf{r}} \times \ddot{\mathbf{r}}) \cdot(\dot{\mathbf{r}} \times \ddot{\mathbf{r}})}{(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}})^{3}} \tag{2.22}
\end{align*}
$$

where the identity $(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{a} \times \mathbf{b})=(\mathbf{a} \cdot \mathbf{a})(\mathbf{b} \cdot \mathbf{b})-(\mathbf{a} \cdot \mathbf{b})^{2}$ is used.
Here are some useful formulae for computing the normal vector and curvature:

- 2D parametric curve $\mathbf{r}(t)$, see Figure 2.9

$$
\begin{align*}
\mathbf{n} & =\mathbf{e}_{z} \times \mathbf{t}=\frac{(-\dot{y}, \dot{x})}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}}, \quad \mathbf{e}_{z}=(0,0,1) \tag{2.23}\\
\kappa & =\frac{\dot{x} \ddot{y}-\dot{y} \ddot{x}}{\left(\dot{x}^{2}+\dot{y}^{2}\right)^{\frac{3}{2}}} \tag{2.24}
\end{align*}
$$

- 2D implicit curve $f(x, y)=0$

$$
\begin{align*}
\mathbf{n} & =\mathbf{e}_{z} \times \mathbf{t}=\frac{\left(f_{x}, f_{y}\right)}{\sqrt{f_{x}^{2}+f_{y}^{2}}}=\frac{\nabla f}{|\nabla f|} \tag{2.25}\\
\kappa & =-\frac{f_{x x} f_{y}^{2}-2 f_{x y} f_{x} f_{y}+f_{x}^{2} f_{y y}}{\left(f_{x}^{2}+f_{y}^{2}\right)^{\frac{3}{2}}} \tag{2.26}
\end{align*}
$$

Figure 2.9: Normal and tangent vectors along a 2D curve.

- 2D Explicit curve $y=f(x)$

$$
\begin{align*}
\mathbf{n} & =\mathbf{e}_{z} \times \mathbf{t}=\frac{(-\dot{y}, 1)}{\sqrt{1+\dot{y}^{2}}} \tag{2.27}\\
\kappa & =\frac{\ddot{y}}{\left(1+\dot{y}^{2}\right)^{\frac{3}{2}}} \tag{2.28}
\end{align*}
$$

2.5 Binormal vector and torsion

Figure 2.10: The tangent, normal, and binormal vectors define an orthogonal coordinate system along a space curve.

Let us define a unit binormal vector, see Figure 2.10

$$
\begin{equation*}
\mathbf{b}=\mathbf{t} \times \mathbf{n} \tag{2.29}
\end{equation*}
$$

We have

$$
\begin{array}{rcr}
\mathbf{t} \cdot \mathbf{n}=0 & \mathbf{n} \cdot \mathbf{b}=0 & \mathbf{b} \cdot \mathbf{t}=0 \\
\mathbf{b}=\mathbf{t} \times \mathbf{n} & \mathbf{t}=\mathbf{n} \times \mathbf{b} & \mathbf{n}=\mathbf{b} \times \mathbf{t}
\end{array}
$$

The osculating plane can be defined as the plane passing through three consecutive points on the curve. The rate of change of the osculating plane is expressed by the vector

$$
\begin{equation*}
\mathbf{b}^{\prime}=\frac{d}{d s}(\mathbf{t} \times \mathbf{n})=\frac{d \mathbf{t}}{d s} \times \mathbf{n}+\mathbf{t} \times \frac{d \mathbf{n}}{d s}=\mathbf{t} \times \mathbf{n}^{\prime} \tag{2.30}
\end{equation*}
$$

where we used the fact that $\frac{d \mathbf{t}}{d s}=\mathbf{r}^{\prime \prime}=\kappa \mathbf{n}$.
From $\mathbf{n} \cdot \mathbf{n}=1 \rightarrow$ differentiate w.r.t. $s \rightarrow 2 \mathbf{n}^{\prime} \cdot \mathbf{n}=0 \rightarrow \mathbf{n}^{\prime} \perp \mathbf{n}$
Thus \mathbf{n}^{\prime} is parallel to the rectifying plane (\mathbf{b}, \mathbf{t}), and \mathbf{n}^{\prime} can be expressed as a linear combination of \mathbf{b} and \mathbf{t}.

$$
\begin{equation*}
\mathbf{n}^{\prime}=\mu \mathbf{t}+\tau \mathbf{b} \tag{2.31}
\end{equation*}
$$

Substitute (2.31) into (2.30)

$$
\begin{equation*}
\mathbf{b}^{\prime}=\mathbf{t} \times(\mu \mathbf{t}+\tau \mathbf{b})=\tau \mathbf{t} \times \mathbf{b}=-\tau \mathbf{b} \times \mathbf{t}=-\tau \mathbf{n} \tag{2.32}
\end{equation*}
$$

τ is called the torsion.
Consequently

$$
\begin{equation*}
\tau=-\mathbf{n} \cdot \mathbf{b}^{\prime}=-\mathbf{n} \cdot(\mathbf{t} \times \mathbf{n})^{\prime}=\frac{\left(\mathbf{r}^{\prime} \mathbf{r}^{\prime \prime} \mathbf{r}^{\prime \prime \prime}\right)}{\mathbf{r}^{\prime \prime} \cdot \mathbf{r}^{\prime \prime}}=\frac{(\ddot{\mathbf{r}} \ddot{\mathbf{r}})}{(\dot{\mathbf{r}} \times \ddot{\mathbf{r}}) \cdot(\dot{\mathbf{r}} \times \ddot{\mathbf{r}})} \tag{2.33}
\end{equation*}
$$

Triple scalar product

$$
\begin{equation*}
(\mathbf{a b c})=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \tag{2.34}
\end{equation*}
$$

also

$$
\begin{equation*}
(\mathbf{a b c})=(\mathbf{b} \mathbf{c a})=(\mathbf{c a b}) \quad \text { cyclic permutation } \tag{2.35}
\end{equation*}
$$

Geometrically, ($\mathbf{a b c}$) equals to the volume of a parallelepiped having the edge vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$, as in Figure 2.11.

Figure 2.11: The computation of the volume of a parallelepiped

2.6 Serret-Frenet Formulae

From equations (2.20) and (2.32), we found that

$$
\begin{align*}
\mathbf{t}^{\prime} & =\kappa \mathbf{n} \tag{2.36}\\
\mathbf{b}^{\prime} & =-\tau \mathbf{n} \tag{2.37}
\end{align*}
$$

How about \mathbf{n}^{\prime} ?

$$
\begin{equation*}
\mathbf{n}^{\prime}=(\mathbf{b} \times \mathbf{t})^{\prime}=\mathbf{b}^{\prime} \times \mathbf{t}+\mathbf{b} \times \mathbf{t}^{\prime}=-\tau \mathbf{n} \times \mathbf{t}+\mathbf{b} \times(\kappa \mathbf{n})=-\kappa \mathbf{t}+\tau \mathbf{b} \tag{2.38}
\end{equation*}
$$

In matrix form we can express the differential equations as

$$
\left[\begin{array}{c}
\mathbf{t}^{\prime} \tag{2.39}\\
\mathbf{n}^{\prime} \\
\mathbf{b}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa(s) & 0 \\
-\kappa(s) & 0 & \tau(s) \\
0 & -\tau(s) & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{t} \\
\mathbf{n} \\
\mathbf{b}
\end{array}\right]
$$

Thus, the curve is completely determined by its curvature and torsion as a function of parameter s. The equations $\kappa=\kappa(s), \tau=\tau(s)$ are called intrinsic equations. The formulae 2.39 are known as the Serret-Frenet Formulae and describe the motion of moving a trihedron ($\mathbf{t}, \mathbf{n}, \mathbf{b}$) along the curve.

Example: Determining the shape of a curve from curvature information and boundary conditions only.

Given:

$$
\kappa=\frac{1}{R}=\mathrm{const}
$$

We find

$$
\begin{array}{r}
\frac{d \mathbf{t}}{d s}=\frac{\mathbf{n}}{R} \\
\frac{d \mathbf{n}}{d s}=-\frac{\mathbf{t}}{R} \tag{2.41}
\end{array}
$$

If we diffrentiate Equation 2.40 with respect to s,

$$
\begin{equation*}
\frac{d^{2} \mathbf{t}}{d s^{2}}=\frac{1}{R} \frac{d \mathbf{n}}{d s} \tag{2.42}
\end{equation*}
$$

Now, substitute Equation 2.42 into Equation 2.41

$$
\begin{equation*}
\frac{d^{2} \mathbf{t}}{d s^{2}}+\frac{\mathbf{t}}{R^{2}}=0 \tag{2.43}
\end{equation*}
$$

Recognizing that $\mathbf{t}=\frac{d \mathbf{r}}{d s}$, we can change variables from \mathbf{t} to \mathbf{r}, transforming Equation 2.43 into

$$
\begin{gather*}
\frac{d^{3} \mathbf{r}}{d s^{3}}+\frac{1}{R^{2}} \frac{d \mathbf{r}}{d s}=0 \\
\text { or } \\
\frac{d^{3}}{d s^{3}}\binom{x(s)}{y(s)}+\frac{1}{R^{2}} \frac{d}{d s}\binom{x(s)}{y(s)}=\binom{0}{0} \tag{2.44}
\end{gather*}
$$

The solution to Equation 2.44 is

$$
\begin{align*}
& x(s)=C_{1}+C_{2} \cos \left(\frac{s}{R}\right)+C_{3} \sin \left(\frac{s}{R}\right) \tag{2.45}\\
& y(s)=C_{1}^{\prime}+C_{2}^{\prime} \cos \left(\frac{s}{R}\right)+C_{3}^{\prime} \sin \left(\frac{s}{R}\right) \tag{2.46}
\end{align*}
$$

Assume we are given suitable initial conditions or boundary conditions. For this example, we will use:

$$
\begin{array}{rll}
x(0)=R & x^{\prime}(0)=0 & x^{\prime \prime}(0)=-\frac{1}{R} \\
y(0)=0 & y^{\prime}(0)=1 & y^{\prime \prime}(0)=0 \tag{2.48}
\end{array}
$$

Solving for the constants in the general solution gives

$$
\begin{array}{ll}
C_{1}=C_{3}=0 & C_{2}=R \\
C_{1}^{\prime}=C_{2}^{\prime}=0 & C_{3}^{\prime}=R \tag{2.50}
\end{array}
$$

Thus, we find our solution is given by

$$
\begin{align*}
& x(s)=R \cos \left(\frac{s}{R}\right) \tag{2.51}\\
& y(s)=R \sin \left(\frac{s}{R}\right) \tag{2.52}
\end{align*}
$$

which is precisely a circle of radius R satisfying the conditions (2.47) and (2.48).
Example: A circular helix $\mathbf{r}=\left(a \cos \frac{s}{c}, a \sin \frac{s}{c}, \frac{b s}{c}\right)$

$$
\begin{aligned}
\mathbf{r}^{\prime}(s) & =\left(-\frac{a}{c} \sin \frac{s}{c}, \frac{a}{c} \cos \frac{s}{c}, \frac{b}{c}\right) \\
\mathbf{r}^{\prime \prime}(s) & =\left(-\frac{a}{c^{2}} \cos \frac{s}{c},-\frac{a}{c^{2}} \sin \frac{s}{c}, 0\right) \\
\mathbf{r}^{\prime \prime \prime}(s) & =\left(\frac{a}{c^{3}} \sin \frac{s}{c},-\frac{a}{c^{3}} \cos \frac{s}{c}, 0\right) \\
\kappa^{2} & =\mathbf{r}^{\prime \prime} \cdot \mathbf{r}^{\prime \prime}=\frac{a^{2}}{c^{4}}\left(\cos ^{2} \frac{s}{c}+\sin ^{2} \frac{s}{c}\right)=\frac{a^{2}}{c^{4}}=\text { constant } \\
\tau & =\frac{\left(\mathbf{r}^{\prime} \mathbf{r}^{\prime \prime} \mathbf{r}^{\prime \prime \prime}\right)}{\mathbf{r}^{\prime \prime} \cdot \mathbf{r}^{\prime \prime}}=\frac{\left(\mathbf{r}^{\prime} \mathbf{r}^{\prime \prime} \mathbf{r}^{\prime \prime \prime}\right)}{\kappa^{2}} \\
& =\frac{c^{4}}{a^{2}}\left|\begin{array}{ll}
-\frac{a}{c} \sin \frac{s}{c} & \frac{a}{c} \cos \frac{s}{c} \\
\frac{b}{c} & \frac{b}{c} \frac{s}{c} \\
\frac{a}{c^{3}} \sin \frac{s}{c} & -\frac{a}{c^{2}} \sin \frac{s}{c}
\end{array} \quad 0\right| \\
& =\frac{c^{4}}{a^{2}} \frac{b}{c}\left(\frac{a^{2}}{c^{5}}\left(\cos ^{2} \frac{s}{c}+\sin ^{2} \frac{s}{c}\right)\right) \\
& =\frac{b}{c^{2}}=\text { constant }
\end{aligned}
$$

Note: when $b>0$, it is a right-handed helix;
when $b<0$, it is a left-handed helix.

Bibliography

[1] P. M. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1976.
[2] E. Kreyszig. Differential Geometry. University of Toronto Press, Toronto, 1959.
[3] M. M. Lipschutz. Theory and Problems of Differential Geometry. Schaum's Outline Series: McGraw-Hill, 1969.
[4] D. J. Struik. Lectures on Classical Differential Geometry. Addison-Wesley, Cambridge, MA, 1950.
[5] T. J. Willmore. An Introduction to Differential Geometry. Clarendon Press, Oxford, 1959.

