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Problem 1 
Consider a linear stable system, as shown below.  Variable u(t)  is input, 

y(t) is output, and e(t)  is uncorrelated white noise with zero mean values. Answer the 
following questions. 
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a). Obtain a one-step-ahead predictor for the output: ŷ(t | t −1) . 

b). Prove that the prediction error y(t) − ŷ(t | t −1) is equivalent to the white noise e(t) , if 
the parameters involved in the system are exactly known. 

Problem 2 
Consider the continuous-time, Laguerre series expansion of the following two 

transfer functions: 
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G1(s) = 
(s +1) 2

, G1 1
2 (s) = 

(s +1)(s + 2) 

a). The Laguerre series expansion is associated with the following transformation of 
variables: 

s + a z = 
s − a 

Change the variable of the above transfer function G1(s)  from s to z, and obtain the new 
transfer function G1(z) . Find the poles of G1(z) , when the parameter a is 1; a = 1. 

b). Setting the parameter a to a = 1 , obtain the coefficients of the Laguerre series 
expansion of G1(s) : 

∞ 

G1(s) = ∑ gk 
k=1 s + a  s + a  

Is the coefficient series { } a finite series or an infinite series? What if the parameter agk
is not 1: a ≠ 1? Explain why. 

c). Change the variable of G2 (s) from s to z in the same way as part a), and obtain the 
new transfer function G2 (z) . Find all the poles of the new transfer function G2 (z) . 

d). Set a = 1.5 , and plot the poles of G2 (z) on a complex plane. Next, set a = 5 , and plot 
the poles once again. Which parameter value gives faster convergence in the Laguerre 
series expansion, a = 1.5 or a = 5 ? Explain mathematically why it converges more 
quickly than the other. 
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Problem 3 
Figure 1 shows the cardiovascular network of a human. A high pressure blood 

flow generated at the left ventricle is distributed through the arterial network. One of the 
clinically important measures of cardiac function is Cardiac Output, determined from the 
aortic blood flow, u(t), as shown in Figure 3. Currently Cardiac Output is directly 
measured with a catheter inserted into the heart. Since catheterization is a dangerous and 
costly procedure, it is desirable to estimate the cardiac output from a peripheral pressure 
using a non-invasive sensor, as shown in Figure 2. This requires the identification of the 
arterial dynamics relating the peripheral sensor output y(t) to the input, i.e. the cardiac 
output, u(t). Inverting this transfer function H(q) yields the cardiac output, 
u(t) = H −1(q) y(t) . 
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Non-invasive estimate of 
cardiac output u(t) using a 
peripheral pressure sensor y(t): 

input u(t) Cardiovascular output y(t) 
System H(q) 

y(t) = H (q)u(t) 
Image removed for copyright reasons. 

Fig. 2 Input-output Figure by MIT OCW. 

)(tu = H −1(q) y(t) 
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Fig. 3 Cardiac output u(t), aortic flow Fig. 4 Radial pressure y(t) 
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Fig. 5  Impulse response: Aortic flow input to peripheral pressure outputs 
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Fig. 1 Cardiovascular network 
Figure by MIT OCW. 

Based on experiment data {u(t), y(t); t = 1,2,"}, this transfer function can be 
determined. A FIR model has a unique feature, since it provides a consistent estimate 
with a standard LSE algorithm although the noise is colored. Unfortunately, however, the 
impulse response of the arterial dynamics includes a slow decaying mode. Figure 5 shows 
typical impulse responses from the aortic flow to pressure outputs measured at the carotid, 
brachial, femoral, and radial arteries. All of the impulse responses show a slow decaying 
mode. Therefore, the FIR model of every arterial dynamics tends to be of high order, 

having many parameters to estimate. Answer the following questions. 

a). The input data, u(t), are repetitive waveforms, as shown in Figure 3. Therefore the 

“richness” of the input signal may be limited. Down load an input data file from assignments

section, and examine the eigenvalues of the matrix, ΦΦT , where 


 u(m) u(m −1) " u(1) 
  

T  u(m +1) u(m) " u(2)  NxmΦ = ∈ R
 # # % # 

 

u(m + N −1) " " u(N ) 
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Note that m is the order of the FIR model and that N is the number of usable data sets for 
identification. Discuss the results with respect to the number of non-zero eigenvalues 
(including almost zero eigenvalues), the rank of the matrix, and the number of FIR model 
parameters that can be identified with the input data. 

b). Use the Laguerre series expansion for compressing the input data and obtain a 
compact FIR model. You need to find a proper combination of Laguerre pole a and the 
reduced FIR model order n through trial-and-error LSE computation. Discuss the results 
with respect to the speed of conversion, i.e. the reduced FIR model order, v.s. the 
Laguerre pole as well as the accuracy of the reduced FIR model. 
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