MIT OpenCourseWare
http://ocw.mit.edu

2.161 Signal Processing: Continuous and Discrete

 Fall 2008For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING

2.161 Signal Processing - Continuous and Discrete Fall Term 2008

Problem Set 6: The z-Transform and Linear Filters

Assigned: October 23, 2008
Due: October 30, 2008

Problem 1: A linear time-invariant filter is used to process sampled data (with sampling interval T), and is described by the the difference equation:

$$
y_{n}=-0.5 y_{n-1}+0.5 u_{n}+u_{n-1}
$$

(a) Determine the transfer function $H(z)$ for the system. Express $H(z)$ as a ratio of polynomials in z^{-1}, and also as a ratio of polynomials in z.
(b) Plot the poles and zeros of $H(z)$ in the z-plane.
(c) Is this a stable system?
(d) From $H(z)$, find the system frequency response function, and show that this is an "all-pass" system, that is $\left|H^{*}(j \omega)\right|=1$ for all $|\omega|<\pi / T$. Determine the system phase response at frequencies $\omega=0$ and $\omega=\pi / T$.

Problem 2: Find causal, stable digital pulse response of discrete time systems with the following transfer functions:
(a)

$$
H_{a}(z)=\frac{1-z^{-1}}{1+0.77 z^{-1}}
$$

(b)

$$
H_{b}(z)=\frac{1+z^{-1}}{1+0.9 z^{-1}+0.81 z^{-2}}
$$

In each case specify the region-of-convergence that you assumed in deriving your answers.

Hint:

$$
\begin{aligned}
\mathcal{Z}\left\{r^{n} \cos (a n)\right\} & =\frac{z(z-r \cos (a))}{z^{2}-2 r \cos (a) z+r^{2}} \\
\mathcal{Z}\left\{r^{n} \sin (a n)\right\} & =\frac{r \sin (a) z}{z^{2}-2 r \cos (a) z+r^{2}}
\end{aligned}
$$

Problem 3: Proakis and Manolakis: Problem 3.8 (p. 215)

Problem 4: Use a partial fraction expansion to find the impulse response of a discrete-time system with a transfer function. (You may use MATLAB's residuez() function if you need to.)

$$
H(z)=\frac{1}{1-\frac{5}{6} z^{-1}+\frac{1}{6} z^{-2}}
$$

Then use MATLAB's impz () function (from the Signal Processing Toolbox) to compute the impulse response and plot it.

Problem 5: An elliptic filter, also known as the Chebyshev-Cauer filter, allows a sharper cut-off in the transition-band by allowing ripples in both the pass-band and in the stop-band. A digital elliptic low-pass digital filter has been designed in MATLAB using the ellip() function, giving the transfer function

$$
H(z)=\frac{0.0798\left(1+z^{-1}+z^{-2}+z^{-3}\right)}{1-1.556 z^{-1}+1.272 z^{-2}-0.398 z^{-3}}
$$

(a) Write the recursive difference equation you would use to implement the filter.
(b) Use MATLAB's function roots to find the system poles and zeros. Make a sketch of the system pole-zero plot using MATLAB's zplane() function.
(c) Use MATLAB's function freqz() to compute and plot the frequency response of the filter (magnitude and phase). Note that the standard function call plots the magnitude on a logarithmic (decibel scale) - make a separate plot with magnitude on a linear scale. Rationalize the behavior of the magnitude plot in terms of the pole-zero plot.
(d) If this filter was used in a real-time operation with $\Delta T=0.1 \mathrm{msec}$, what would the -3 dB cut-off frequency be? (You may use the plots from (c) as a starting point.)

