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Problem 1: 

Y (jΩ) = H(jΩ)F (jΩ) and it is shown in the below figure 

Y ( jw)
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1 
�∞

y(t) = Y (jΩ)ejΩtdt 
2π 

−∞ 

10 
�400 −�200

= ( ejΩtdt + ejΩtdt)
2π

200 −400 

10 
= (e 400jt − e 200jt − e −400jt + e −200jt)

2πjt
10 

= (sin(400t) − sin(200t)) 
πt

It is not a casual filter (since y(t) = 6 0 for some t < 0). h(t)/5 and h(t) = 

Problem 2: 

We define H∗(jΩ) = 1 − H(jΩ). Then H∗(jΩ) is a low pas filter, matching Prob. 5 in 
PS 1, which we have already found it’s impulse response: 

H(jΩ) = 1 − H∗(jΩ) 
F−1 (H(jΩ)) = F−1 (1) −F−1 (H∗(jΩ)) 

h(t) = δ(t) − h∗(t) 

h(t) = δ(t) − sin(Ωct) 
πt 
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Problem 3: 

∞	 ∞

x(t) = An sin(nΩ0t + φn) = An (sin(nΩ0t) cos φn + cos(nΩ0t) sin φn) 
n=0	 n=0 

∞

X(jΩ) =	
� 

An( F(sin(nΩ0t)) cos φn + F(cos(nΩ0t)) sin φn) 
n=0 
∞

X(jΩ) =	
� 

An (cos φn (−jπ (δ(Ω − nΩ0) − δ(Ω + nΩ0))) + sin φn (π (δ(Ω − nΩ0) + δ(Ω + nΩ0)))) 
n=0 

∞

X(jΩ) = −jπ	
� 

An ((cos φn + j sin φn) (δ(Ω − nΩ0) + (− cos φn + j sin φn) (δ(Ω + nΩ0)) 
n=0 
∞

X(jΩ) = −jπ	
� 

An 

�
ejφn δ(Ω − nΩ0) − e−jφn δ(Ω + nΩ0)

� 
n=0 

Problem 4: 

(a)	 The ideal multiplicative filtering operation is a low pass filtering with the pass-band 
Ωc = NΩ0: � 

1 |n| ≤ N, |Ω| ≤ ΩcHn = 
0 |n| > N, |Ω| > Ωc 

X�n = XnHn 

(b) It’s a convolution in this specific form: 

1 
�
 T 

2 

x(t) = x(t) ⊗ h(t) = x(τ)h(t − τ)dτ 
T 

− 
T 
2 

We can prove that why convolution is in this specific integral form for our Periodic 
Exponential Fourier Transform: 

� � 
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XnHne
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−jnΩ0τdτ ejnΩ0t x(t) =
 Xn h(τ)e 
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− 
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jnΩ0(t−τ)
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Xne 
�
Xne

2 2 
−jnΩ0τ x(t) = h(τ) dτ = h(τ)
 dτ
e


T
 T
T T 
− −n=−∞ n=−∞ 2 2 

1 
�
 T 

2 

x(t) =	 h(τ)x(t − τ)dτ 
T 

− 
T 
2 

We can also find the specific form of our filter: 

∞ N N N� 
jnΩ0t 

� 
jnΩ0t 

� �
h(t) = Hne = e = 1 + 2 cos (nΩ0t) = −1 + 2 cos (nΩ0t) 

n=−∞ n=−N n=1 n=0 
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Here we use below trigonometric relation to simplify our summation, where ϕ = 0 and 
α = Ω0t: 

�
(n+1)α

� 
nα sin

2 
· cos (ϕ + 

2 
) 

cos ϕ + cos (ϕ + α) + cos (ϕ + 2α) + · · · + cos (ϕ + nα) = 
sin α 

2 
�

(N+1)Ω0t
�

N sin
2 

· cos (NΩ
2 

0t) 
h(t) = −1 + 2 

� 
cos (nΩ0t) = −1 + 2 

sin Ω0t 
n=0 2 

Then we use below trigonometric relation to simplify our impulse response: 

2 sin θ cos ϕ = sin(θ + ϕ) + sin(θ − ϕ) 
�

(N+1)Ω0 t
�

sin 
2 

· cos (NΩ
2 

0t) sin 
�
(N + 1)Ω0t

� 
+ sin (Ω0t)

h(t) = −1 + 2 = −1 + 2 2 

sin Ω0t sin Ω0t 
2 2 

sin
�
(N + 

2
1)Ω0t

� 
h(t) = 

sin Ω0t 
2 

Here we further analyze this h(t) function, so we can use its properties for the next

part of the problem:

Note that for small t values, h(t) can be approximated to:


sin
�
(N + 

2
1)Ω0t

� 
t → 0 ⇒ h(t) → 

Ω0t 
2 

sin (NΩ0t)The value of h(t) |t→0 , for large N values, is very close to h∗ = 
πt 

which can be 
obtained for a Continuous Fourier Transform of a Low Pass Filter with Ωc = NΩ0. 
Hence, in the vicinity of t = 0, h(t) acts like a sinc function (with the maximum value 
of 2N + 1), but as soon as it gets close to its boundaries (|t| ≤ T 

2 
⇒ |Ω0t| ≤ π), it 

oscillates quickly with Ω = (N + 0.5)Ω0 around −1 and +1. 

Note that for the Continuous Fourier Transform, we expect a h∗(t); where it is to 
be evaluated between −∞ to +∞ and contained with an envelope in the form of 1 

t 
. 

On the other hand, for our case of Periodic Fourier Transform, h(t) it is to be evaluated 
between −T to +T and is also periodic. 

2 2 

Note that for any N value, if x(t) ≡ 1 then x�(t) ≡ 1 which means that following 
relation holds for any N: 

1 = 
1 

T 

� T 
2 

− 
T 

h(τ)dτ = 
2 

T 

� T 
2 

0 

h(τ)dτ 
2 

Furthermore, for very large N values, the h(t) function become very narrow, and hence 
above integral can be approximated to the integration around any finite, non-zero 
interval around t = 0: 

t ∗ 
T 1 

� 
1 
� T 

2 

(Eq. 1) N → ∞ ⇒ ∀t ∗ s.t. 0 < t ∗ ≤ : h(τ)dτ → h(τ)dτ 
2 T 0 T 0 
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This properties can be used to prove that x�(t) values converge to x(t) values at any 
continuous point and to the mean of right and left limits at any stepwise discontinuous 
point of x(t). Furthermore, the structure of h(t) shows that the ripple will vanish at 
any point in which x(t) is continuous. Besides, as we will see in the next part, only a 
finite and determined value of ripple will be allowed to remain and it will be pushed 
to the edge of discontinuities. 

(c)	 The output signal is a convolution of the original signal with the h(t). Hence, it is very 
clear that ripples are due to deviation of h(t) from ideal case of δ(t). Consequently, as 
soon as N goes up, h(t) becomes more like a δ(t) function, acts more locally, and the 
output signal ripples with an increases frequency. 

For very large N values, the ripple percentage is a fixed amount, although its location 
is dependent on N value. The amount of ripple is fixed, because although different 
h(t) functions have different curves, but always the maximum ripple corresponds to 
the point where the edge of the central lobe matches with the discontinuity. We will 
prove this rigorously, but in fact since the ratio of the area of the central lobe, to the 
rest of the lobes remains constant, the ripple percentage remains constant as well. 

Note that due to Eq. 1, only the behavior of function around discontinuity mat
ters (as long as discontinuities have a finite non-zero distance from each other). Hence, 
without the loss of generality, we extend discontinuity limits to the the full extent of 
the function and consider our function in the below form where A value corresponds 
to the discontinuity jump: 

T
� 

A 0 ≤ t < 
x(t) = T 

2 

0 − ≤ t < 0
2 

Below figure shows this conditions: 

A 

0 

+ 
+ + 

− − −− 

h(t) for N=10, not to the scale 

x(t), to the scale 

t_max 

0	 T/2-T/2 

By moving h(t) on the x(t), we can realize that, at each point, the x�(t) is an average 
of neighborhood points. Particularly, the sign of lobes determine that whether those 
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point have a positive or negative contribution. Since, major contribution comes from 
the central lobes, we can guess that the maximum ripple occurs when the edge of cen
tral lobe match with t = 0. In that case, the next negative lobe cannot decrease the 
x(t) value and we have a maximum ripple. The next maxima and minima of ripples 
also correspond to other lobe edges touching t = 0. 

Now we prove this rigorously. For our specific case of x(t), and our even h(t) function, 
we can simplify the convolution integral: 

1
 A
 A

T T T 

−t 
2 2 2 

x�(t) = 
T

h(t − τ)x(τ)dτ = 
T 0 

h(t − τ)dτ = 
T 

−t 

h(τ)dτ 
T 

− 
2 

dx�(t)
= −h( 

T 
− t) + h(t)

dt 2 

We are interested in 0 < t << T x(t) , and hence db ≈ h(t). Consequently, maxi
2 dt 

mum/minimum values correspond to (N + 1
2
)Ω0tmax/min = kπ such that 0 < k << N . 

π TThe highest maximum corresponds to the
 Now we compute
tmax = =
 .
1

2

1

2
(N+ )Ω0 2(N+ ) 

the x�(tmax) value by breaking the original integral to two parts: 

A
 −tmax 1
 0� 
1 
�T T 

−tmax 
2 2 

x(tmax) = h(τ)dτ = A( h(τ)dτ + h(τ)dτ)�
T 

−tmax 
T 

−tmax 
T 0 

Now note that for large N values from Eq. 1 we can conclude that: 

1
 −tmax 1

T T 

1
2 2 

h(τ)dτ) = h(τ)dτ) = 
T 0 T 0 

Also for the other part of integral, τ is very close to zero and we can simplify h(t) with 
a sinc form and also change integration variable by θ = (N + 

2
1)Ω0t: 

0 0 1 01 
� 

1 
� 

sin ((N + 
2
)Ω0τ) 1 

� 
sin θ 2 1 

� π sin θ 

T 
−tmax 

h(τ)dτ) = 
T 

−tmax 
Ω
2 
0τ 

dτ = 
T 

−π θ Ω0 
dθ = 

π 0 θ 
dθ 

A short survey of literature or a Taylor expansion of sin 
θ

θ ends to: 

π1 
� 

sin θ 
dθ = + 0.089490... 

π 0 θ 2 

Hence the maximum ripple corresponds to: 

1 1 
x�(tmax) = A(

2
+

2
+ 0.089490...) = A(1 + 0.089490...) 

2 

1 

This corresponds to about 9% overshoot and this overshoot is only dependent on the 
local discontinuity jump and independent of N or specific form of x(t). Other proofs, 
for less general cases, could also be found in the Wikis. 
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Problem 5: 

(a) 
s − 3 

H(s) = K 
s + 3 

jΩ − 3 
|H(jΩ)| = |K| 

���� 

���� = |K|
jΩ + 3 

(b) Consider this pole-zero plot: 
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Let the vectors from the poles and zeros to an arbitrary test frequency Ω be ri and qi: 

|q1| |q2| |q3|
|H(jΩ)| = |K| = |K|

|r1| |r1| |r1| 

since |qi| = |ri| for all i regardless of the system order. Therefore, this given pole-zero 
configuration, as well as all who satisfy problem conditions, are all-pass filters. 

(c) MATLAB Command − line : 

>> H_s=tf([1 -3],[1 3]) 

Transfer function:

s - 3


s + 3


>> bode(H_s);

>> subplot(2,1,1) 
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>> step(H_s); 
>> subplot(2,1,2) 
>> impulse(H_s); 

Bode Diagram 
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(d) These filters are useful for manipulating the phase of the spectral components in a 
signal, without altering its magnitude. 
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