
MIT OpenCourseWare
http://ocw.mit.edu

2.161 Signal Processing: Continuous and Discrete
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

� 	 � 	
� 	 �

1

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.161 Signal Processing - Continuous and Discrete
Fall Term 2008

Lecture 251

Reading:

• Class Handout: Introduction to Least-Squares Adaptive Filters

• Class Handout: Introduction to Recursive-Least-Squares (RLS) Adaptive Filters

• Proakis and Manolakis: Secs. 13.1 – 13.3

Adaptive Filtering

In Lecture 24 we looked at the least-squares approach to FIR filter design. The filter coef
ficients bm were generated from a one-time set of experimental data, and then used subse
quently, with the assumption of stationarity. In other words, the design and utilization of
the filter were decoupled.

We now extend the design method to adaptive FIR filters, where the coefficients are
continually adjusted on a step-by-step basis during the filtering operation. Unlike the static
least-squares filters, which assume stationarity of the input, adaptive filters can track slowly
changing statistics in the input waveform.

The adaptive structure is shown in below. The adaptive filter is FIR of length M with
coefficients bk, k = 0, 1, 2, . . . , M − 1. The input stream {f(n)} is passed through the filter
to produce the sequence {y(n)}. At each time-step the filter coefficients are updated using
an error e(n) = d(n) − y(n) where d(n) is the desired response (usually based of {f(n)}).

� � � � � � � � � 	
 � � � � � � � � � �
 �
� � � �

� � � � � � �
 � �
 � � � � � � � � �
 �
� � � � � � � � � � � � � � � � � � �

� 	

 � � � �

� � � �
 � � � �
 � � � � �
 	 � �

The filter is not designed to handle a particular input. Because it is adaptive, it can adjust
to a broadly defined task.

1copyright ©c D.Rowell 2008

25–1

∑

� � 	 �

� �

1.1 The Adaptive LMS Filter Algorithm

1.1.1 Simplified Derivation

In the length M FIR adaptive filter the coefficients bk(n), k = 1, 2, . . . , M −1, at time step n
are adjusted continuously to minimize a step-by-step squared-error performance index J(n):

()2M−1

J(n) = e 2(n) = (d(n) − y(n))2 = d(n) − b(k)f(n − k)
k=0

J(n) is described by a quadratic surface in the bk(n), and therefore has a single minimum.
At each iteration we seek to reduce J(n) using the “steepest descent” optimization method,
that is we move each bk(n) an amount proportional to ∂J(n)/∂b(k). In other words at step
n + 1 we modify the filter coefficients from the previous step:

∂J(n)
bk(n + 1) = bk(n) − Λ(n) , k = 0, 1, 2, . . . M − 1

∂bk(n)

where Λ(n) is an empirically chosen parameter that defines the step size, and hence the rate
of convergence. (In many applications Λ(n) = Λ, a constant.) Then

∂J(n) ∂e2(n) ∂e(n)
= = 2e(n) = −2e(n)f(n − k)

∂bk ∂bk ∂bk

and the fixed-gain FIR adaptive Least-Mean-Square (LMS) filter algorithm is

bk(n + 1) = bk(n) + Λe(n)f(n − k), k = 0, 1, 2, . . . M − 1

or in matrix form

b(n + 1) = b(n) + Λe(n)f(n),

where
b(n) = [b0(n) b1(n) b2(n) · · · bM−1]

T

is a column vector of the filter coefficients, and

f(n) = [f(n) f(n − 1) f(n − 2) · · · f(n − (M − 1))]T

is a vector of the recent history of the input {f(n)}.
A Direct-Form implementation for a filter length M = 5 is

� �

�

� � � � 	 �

� �

�

� � � � 	 �

��

� �

�

� � � � 	 �

��

� �

�

� � � � 	 �

�

�

� � � � 	 �

�
�

� �

� � � �

� � 	 �

� � 	 �

� � 	 �

� � � � � � �
 � � � � � � � � � � � � � �
� � � � 	
 � � � � � � � � � � 	 � � �
 � � � � � 	 � � � 	 � � �

25–2

1.1.2 Expanded Derivation

A more detailed derivation of the LMS algorithm (leading to the same result) is given in the
class handout Introduction to Least-Squares Adaptive Filters, together with a brief discussion
of the convergence properties.

1.1.3 A MATLAB Tutorial Adaptive Least-Squares Filter Function

% --
% 2.161 Classroom Example - LSadapt - Adaptive Lleast-squares FIR filter
% demonstration
% Usage : 1) Initialization:
% y = LSadapt(’initial’, Lambda, FIR_N)
% where Lambda is the convergence rate parameter.
% FIR_N is the filter length.
% Example:
% [y, e] = adaptfir(’initial’, .01, 51);
% Note: LSadapt returns y = 0 for initialization
% 2) Filtering:
% [y, b] = adaptfir(f, d};
% where f is a single input value,
% d is the desired input value, and
% y is the computed output value,
% b is the coefficient vector after updating.
%
% Version: 1.0
% Author: D. Rowell 12/9/07
% --
%
function [y, bout] = LSadapt(f, d ,FIR_M)
persistent f_history b lambda M
%
% The following is initialization, and is executed once
%
if (ischar(f) && strcmp(f,’initial’))

lambda = d;

M = FIR_M;

f_history = zeros(1,M);

b = zeros(1,M);

b(1) = 1;

y = 0;

else
% Update the input history vector:

for J=M:-1:2
f_history(J) = f_history(J-1);

25–3

� 	 � � � 	

� 		 � 	

� 	

end;

f_history(1) = f;

% Perform the convolution
y = 0;
for J = 1:M

y = y + b(J)*f_history(J);

end;

% Compute the error and update the filter coefficients for the next iteration
e = d - y;
for J = 1:M

b(J) = b(J) + lambda*e*f_history(J);

end;

bout=b;

end

1.1.4	 Application Example - Suppression of Narrow-band Interference in a
Wide-band Signal

Consider an adaptive filter application of suppressing narrow band interference, or in terms
of correlation functions we assume that the desired signal has a narrow auto-correlation
function compared to the interfering signal.

Assume that the input {f(n)} consists of a wide-band signal {s(n)} that is contaminated
by a narrow-band interference signal {r(n)} so that

f(n) = s(n) + r(n).

The filtering task is to suppress r(n) without detailed knowledge of its structure. Consider
the filter shown below:

	 � � � � ! � " � 	 �

� � � � � � � � � 	
 � � � � � � � � � �
 �
� � � �� � �

� � � � � � �
 � �
 � � � � � � � � �
 �
� � � � � � � � � � � � � � � � � � �

� 	 �
 � �
 �
 	 �

� 	 �

 � � � �
� 	 � � � � � 	

! � �
 � " � 	 �

� � � 	 � � �
 � �

� � � �
 � � � �
 � � � � �
 	 � �

This is similar to the basic LMS structure, with the addition of a delay block of Δ time steps
in front of the filter, and the definition that d(n) = f(n). The overall filtering operation is
a little unusual in that the error sequence {e(n)} is taken as the output. The FIR filter is
used to predict the narrow-band component so that y(n) ≈ r(n), which is then subtracted
from d(n) = f(n) to leave e(n) ≈ s(n).

The delay block is known as the decorrelation delay. Its purpose is to remove any
cross-correlation between {d(n)} and the wide-band component of the input to the filter

25–4

∑

{s(n − Δ)}, so that it will not be predicted. In other words it assumes that

φss(τ) = 0, for |τ | > Δ.

This least squares structure is similar to a Δ-step linear predictor. It acts to predict the cur
rent narrow-band (broad auto-correlation) component from the past values, while rejecting
uncorrelated components in {d(n)} and {f(n − Δ)}.

If the LMS filter transfer function at time-step n is Hn(z), the overall suppression filter
is FIR with transfer function H(z):

E(z) F (z) − z−ΔHn(z)F (z)
H(z) = =

F (z) F (z)

= 1 − z −ΔHn(z)

= z 0 + 0z −1 + . . . + 0z −(Δ−1) − b0(n)z −Δ − b1(n)z −(Δ+1) + . . .

. . . − bM−1(n)z −(Δ+M −1)

that is, a FIR filter of length M + Δ with impulse response h′(k) where ⎧ ⎨ 1 k = 0
h′(k) = 0 1 ≤ k < Δ ⎩ −bk−Δ(n) Δ ≤ k ≤ M + Δ − 1

and with frequency response

M+Δ−1

H(ej Ω) = h′(k)e −jkΩ .
k=0

The filter adaptation algorithm is the same as described above, with the addition of the
delay Δ, that is

b(n + 1) = b(n) + Λe(n)f(n − Δ))

or
bk(n + 1) = bk(n) + Λe(n)f((n − Δ) − k), k = 0, 1, 2, . . . M − 1.

Example 1

The frequency domain Characteristics of an LMS Suppression Filter:
This example demonstrates the filter characteristics of an adaptive LMS filter af
ter convergence. The interfering signal is comprised of 100 sinusoids with random
phase and random frequencies ω between 0.3 and 0.6. The “signal” is white noise.
The filter used has M = 31, Δ = 1, and Λ was adjusted to give a reasonable
convergence rate. The overall system H(z) = 1 − z−ΔHn(z) frequency response
magnitude is then computed and plotted, along with the z-plane pole-zero plot.

25–5

% The frequency domain filter characteristics of an interference
% suppression filter with finite bandwidth interference
%
% Create the interference as a closely packed sum of sinusoids
% between 0.3pi < Omega < 0.6pi with random frequency and phase

phase = 2*pi*rand(1,100);

freq = 0.3 + 0.3*rand(1,100);

f = zeros(1,100000);

for J=1:100000

f(J) = 0;

for k = 1:100

f(J) = f(J) + sin(freq(k)*J + phase(k));

end

end

% The "signal" is white noise

signal = randn(1,100000);
f = .005*f + 0.01*signal;

% Initialize the filter with M = 31 , Delta =1
% Choose filter gain parameter Lambda = 0.1

Delta = 1; Lambda = 0.5; M = 31;
x = LSadapt(’initial’,Lambda, M);

% Filter the data
f_delay = zeros(1,Delta+1);
y = zeros(1,length(f));
e = zeros(1,length(f));
for J = 1:length(f)

for K = Delta+1:-1:2
f_delay(K) = f_delay(K-1);

end

f_delay(1) = f(J);

[y(J),b] = LSadapt(f_delay(Delta+1),f(J));

e(J) = f(J) - y(J);

end;
% Compute the overall filter coefficients
% H(z) = 1 - z^{-Delta}H_{LMS}(z)

b_overall = [1 zeros(1,Delta-1) -b];
% Find the frequency response

[H,w] = freqz(b_overall,1);
zplane(b_overall,1)

The following plots show (i) the input input and output spectra, the filter fre
quency response magnitude, and (iii) the pole-zero plot of the filter. Note that
the zeros have been placed over the spectral region (0.3 < ω < 0.6) to create the
band-reject characteristic.

25–6

4

M
ag

ni
tu

de

Spectrum of input signal f(n) Spectrum of output signal e(n)
8 8

7 7

6 6

5 5

M
ag

ni
tu

de

4

3 3

2 2

1 1

0
0

1 2 3
Normalized angular frequency

0
0

1 2 3
Normalized angular frequency

Adaptive Filter Frequency Response

−30

−25

−20

−15

−10

−5

0

5

M
ag

ni
tu

de
 (

dB
)

0	 0.5 1 1.5 2 2.5 3
Normalized frequency

Adaptive Filter − z−plane pole/zero plot

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

31

Im
ag

in
ar

y
P

ar
t

−1 −0.5 0 0.5 1
Real Part

25–7

(())

Example 2

Suppression of a “Sliding” Sinusoid Superimposed on a Voice Signal:
In this example we demonstrate the suppression of a sinusoid with a linearly
increasing frequency superimposed on a voice signal. The filtering task is to task
is to suppress the sinusoid so as to enhance the intelligibility of the speech. The
male voice signal used in this example was sampled at Fs = 22.05 kHz for a
duration of approximately 8.5 sec. The interference was a sinusoid

Fs 2 r(t) = sin(ψ(t)) = sin 2π t + t
150

where Fs = 22.05 kHz is the sampling frequency. The instantaneous angular
frequency ω(t) = dψ(t)/dt is therefore

ω(t) = 2π(50 + 294t) rad/s

which corresponds to a linear frequency sweep from 50 Hz to approx 2550 Hz
over the course of the 8.5 second message. In this case the suppression filter
must track the changing frequency of the sinusoid.

% Suppression of a frequeny modulated sinusoid superimposed on speech.
% Read the audio file and add the interfering sinusoid

[f,Fs,Nbits] = wavread(’crash’);
for J=1:length(f)

f(J) = f(J) + sin(2*pi*(50+J/150)*J/Fs);

end

wavplay(f,Fs);

% Initialize the filter
M = 55; Lambda = .01; Delay = 10;
x = LSadapt(’initial’, Lambda, M);
y = zeros(1,length(f));
e = zeros(1,length(f));
b = zeros(length(f),M);
f_delay = zeros(1,Delay+1);

% Filter the data
for J = 1:length(f)

for K = Delta+1:-1:2
f_delay(K) = f_delay(K-1);

end

f_delay(1) = f(J);

[y(J),b1] = LSadapt(f_delay(Delta+1),f(J));

e(J) = f(J) - y(J);

25–8

b(J,:) = b1;
end;

%
wavplay(e,Fs);

The script reads the sound file, adds the interference waveform and plays the
file. It then filters the file and plays the resulting output. After filtering the
sliding sinusoid can only be heard very faintly in the background. There is some
degradation in the quality of the speech, but it is still very intelligible.

This example was demonstrated in class at this time.

The following plot shows the waveform spectrum before filtering. The superpo
sition of the speech spectrum on the pedestal spectrum of the swept sinusoid can
be clearly seen.

0

500

1000

1500

2000

2500

M
ag

ni
tu

de

Input Spectrum

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Frequency (Hz)

The pedestal has clearly been removed after filtering, as shown below.

Filtered Output Spectrum

0

100

200

300

400

500

600

700

800

900

1000

M
ag

ni
tu

de

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Frequency (Hz)

25–9

� � 	 �

� � � �

The magnitude of the frequency response filter as a meshed surface plot, with
time as one axis and frequency as the other. The rejection notch is clearly visible,
and can be seen to move from a low frequency at the beginning of the message
to approximately 2.5 kHz at the end.

M
ag

ni
tu

de
 (

dB
)

20

0

−20

−40

−60

10

8

4000

6 3000
4 2000

2 1000
Time (sec) 0 0 Frequency (Hz)

Example 3

Adaptive System Identification:
An adaptive LMS filter may be used for real-time system identification, and will
track slowly varying system parameters. Consider the structure shown in below.

� � 	 � � 	 # 	 � ! 	 � � $ � � � �
 � � � �
 � � � � � � � �

� � � � � � � � � 	
 � � � � � � � � � �
 � � � 	 �

� � � � �

 � � � � � �
 � � � � � � � �

�
 � � � 	 �

� � � �
 � � � �
 � � � � �
 	 � � � � � �

� � � � � � �
 � �
 � � � � � � � � �
 � � � 	 �
� � � � � � � � � � � � � � � � � � �
 � � � �

25–10

A linear system with an unknown impulse response is excited by wide-band
excitation f(n), The adaptive, length M FIR filter works in parallel with the
system, with the same input. Since it is an FIR filter, its impulse response is the
same as the filter coefficients, that is

h(m) = b(m), for m = 0, 1, 2, . . . M − 1.

and with the error e(n) defined as the difference between the system and filter
outputs, the minimum MSE will occur when the filter mimics the system, at
which time the estimated system impulse ĥ(m) response may be taken as the
converged filter coefficients.

Consider a second-order “unknown” system with poles at z1, z2 = Re±jθ, that is
with transfer function

1
H(z) = ,

1 − 2Rcos(θ)z−1 + R2z−2

where the radial pole position R varies slowly with time. The following MATLAB
script uses LSadapt() to estimate the impulse response with 10,000 samples of
gaussian white noise as the input, while the poles migrate from z1, z2 = 0.8e±jπ/5

to 0.95e±jπ/5

% Adaptive SysID
f = randn(1,10000);

% Initialize the filter with M = 2, Delta =.8
% Choose filter gain parameter Lambda = 0.1

Lambda = 0.01; M = 51;
x = LSadapt(’initial’,Lambda,M);

% Define the "unknown" system
R0 = .8; R1 = 0.95; ctheta = cos(pi/5);
delR = (R1-R0)/L;
L = length(f);
b=zeros(M,L);
ynminus2 = 0; ynminus1 = 0;
for J = 1:L

% Solve the difference equation to determine the system output
% at this iteration

R = R0 + delR*(J-1);
yn = 2*R*ctheta*ynminus1 - R^2*ynminus2 + f(J);
ynminus2 = ynminus1;
ynminus1 = y;
[yout,b(:,J)] = LSadapt(f(J),yn);

end;

The following plot shows the estimated impulse response, ĥ(m) = b(m), as the
poles approach the unit circle during the course of the simulation, demonstrating
that the adaptive algorithm is able to follow the changing system dynamics.

25–11

0
10

20
30

40
50 0.8

0.85

0.9

0.95

−1.5

−1

−0.5

0

0.5

1

1.5

2

Pole radius

Time step (n)

Im
pu

ls
e

re
sp

on
se

 h
(n

)

1.2 The Recursive Least-Squares Filter Algorithm

The recursive-least-squares (RLS) FIR filter is an alternative to the LMS filter described
above, where the coefficients are continually adjusted on a step-by-step basis during the
filtering operation. The filter structure is similar to the LMS filter but differs in the internal
algorithmic structure.

Like the LMS filter, the RLS filter is FIR of length M with coefficients bk, k = 0, 1, 2, . . . , M−
1. The input stream {f(n)} is passed through the filter to produce the sequence {y(n)}. At
each time-step the filter coefficients are updated using an error e(n) = d(n) − y(n) where
d(n) is the desired response (usually based of {f(n)}).

The LMS filter is implicitly designed around ensemble statistics, and uses a gradient
descent method based on expected values of the waveform statistics to seek optimal values
for the filter coefficients. On the other hand, the RLS filter computes the temporal statistics
directly at each time-step to determine the optimal filter coefficients. The RLS filter is
adaptive and can adjust to time varying input statistics. Under most conditions the RLS
filter will converge faster than a LMS filter.

Refer to the class handout Introduction to Recursive-Least-Squares (RLS) Adaptive Fil
ters for details.

25–12

