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Reading: 

• Class Handout: Direct-Form Digital Filter Structures 

• Proakis and Manolakis: Sec. 9.1 – 9.3 

• Oppenheim, Schafer, and Buck: 6.0 – 6.5 

Direct-Form Filter Structures 

Linear shift-invariant digital filters can be represented in block diagram form in terms of the 
three primitive elements 
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Transversal FIR Structure 

Let the FIR structure to be implemented be 

N 

H(z) =  bnz −k 

k=0 

so that the difference equation is 
N 

yn = bkfn−k. 
k=0 

The following block diagram is the transversal form of this system: 
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The following MATLAB code implements this structure in a point-by-point filtering function: 

% ------------------------------------------------------------------------
% 2.161 Classroom Example - firdf - Demonstration FIR Direct Form 
% implementation. 
% Usage : 1) Initialization: 
%  b = [1 2 3 4 5 4 3 2 1];  
% y = iirdf1(’initial’, b); 
% where b are the numerator polynomial coefficients. Example: 
% y = iirdf1(’initial’,[1 2 5 2  1]); 
% Note: firdf returns y = 0 for  initialization 
% 2) Filtering: 
% y_out = firdf(f); 
% where f is a single input value, and 
% y_out is the computed output value. 
% Example: To compute the step response: 
% for j=1:100 
% y(j) = firdf(1); 
% end 
% ------------------------------------------------------------------------
% 
function y_n = firdf(f_n,B) 
persistent f_register Bx N 
% 
% The following is initialization, and is executed once 
% 
if (ischar(f_n) && strcmp(f_n,’initial’)) 

N = length(B); 
Bx = B;  
f_register = zeros(1,N); 
y_n = 0;  
else 

% Filtering: 
y_n = 0;  
for J = N:-1:2 

f_register(J) = f_register(J-1); 
y_n = y_n + Bx(J)*f_register(J); 

end 
y_n = y_n + Bx(1)*f_n; 
f_register(1) = f_n; 

end 
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3 IIR Direct Form Structures 

Let the IIR structure to be implemented be 
�N −kbnzk=0H(z) =  �N1 +  k=1 akz−k 

where it is assumed that the orders of the numerator and denominator of H(z) are equal. 
The difference equation is 

N N 

yn = − akyn−k + bkfn−k. 
k=1 k=0 

Write H(z) as a pair of cascaded sub-systems, 

H(z) =  H1(z)H2(z) 

where 
N 

H1(z) =  
� 

bnz −k , and H2(z) =  �N 

1 
. 

1 +  akz−k 
k=0 k=1 

3.1 Direct Form I 

Define an intermediate variable xn, and implement as X(z) =  H1(z)F (z) and Y (z) =  
H2(z)X(z), or in difference equation form as 

N 

xn = bkfn−k 

k=0 

N 

yn = − akyn−k + xn 

k=1 

as shown below: 
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The following MATLAB code implements the Direct Form I structure in a point-by-point 
filtering function. 

% ------------------------------------------------------------------------
% 2.161 Classroom Example - iirdf1 - Demonstration IIR Direct Form I 
% implementation. 
% Usage : 1) Initialization: 
% y = iirdf1(’initial’, b, a) 
% where b, a are the numerator and denominator polynomial 
% coefficients. Example: 
% [b,a] = butter(7,0.4); 
% y = iirdf1(’initial’,b,a); 
% Note: iirdf1 returns y = 0 for  initialization 
% 2) Filtering: 
% y_out = iirdf1(f_{in}; 
% where f_in is a single input value, and 
% y_out is the computed output value. 
% Example: To compute the step response: 
% for j=1:100 
% y(j) = iirdf1(1); 
% end 
% ------------------------------------------------------------------------
function y_n = iirdf1(f_n,B,A) 
persistent f_register y_register Bx Ax N 
% 
% The following is initialization, and is executed once 
% 
if (ischar(f_n) && strcmp(f_n,’initial’)) 

N = length(A);

Ax = A; 

Bx = B; 

f_register = zeros(1,N);

y_register = zeros(1,N);

y_n = 0; 

else


% Filtering: (Note that a Direct Form I filter needs two shift registers.) 
x = 0; y = 0;  
for J = N:-1:2 

y_register(J) = y_register(J-1); % Move along the shift register

f_register(J) = f_register(J-1);

y = y - Ax(J)*y_register(J);

x = x +  Bx(J)*f_register(J);


end 
x = x +  Bx(1)*f_n; 
y_n = y + x;  
f_register(1) = f_n; 
y_register(1) = y_n; 

end 
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3.2 Direct Form II 

The Direct Form II structure results from reversing the order of H1(z) and H2(z) so that 
X(z) =  H2(z)F (z) and Y (z) =  H1(z)X(z), or in difference equation form as 

N 

xn = − akfn−k 

k=1 

N 

yn = bkxn−k. 
k=0 

as shown below: 

� � � 

�

�

� � 

� � 

� � �

�

�

�

�



�

�

� � 

�

�

� 

�

� 

�
�



�

�

� �

� �

� �

�

�

�

�
� � �

� � �

� � �

�

�

�
� � � 

� � �

�

�

�

�

�

�

� �

� �

� �



�

� 

�

�

� ��



� � �� �

��

�

�

� �  

� � �

�

�

� � � 
�
� � � 

� 

From the left hand figure it can be seen that the values xn−k, k = 0, . . . N , in the two shift 
registers is equal, and that they can be combined to create the Direct Form II structure, as 
is shown on the right. 

The following MATLAB code implements the Direct Form II structure in a point-by-point 
filtering function: 

% ------------------------------------------------------------------------

% 2.161 Classroom Example - iirdf2 - Demonstration IIR Direct Form II

% implementation.

% Usage : 1) Initialization:

% y = iirdf2(’initial’, b, a)

% where b, a are the numerator and denominator polynomial

% coefficients. Example:

% [b,a] = butter(7,0.4);

% y = iirdf2(’initial’,b,a);

% Note: iirdf2 returns y = 0 for  initialization

% 2) Filtering:

% y_out = iirdf2(f_{in};

% where f_in is a single input value, and

% y_out is the computed output value.

% Example: To compute the step response:
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% for j=1:100 
% y(j) = iirdf2(1); 
% end 
% ------------------------------------------------------------------------
% 
function y_n = iirdf2(f_n,B,A) 
persistent register Bx Ax N 
% 
% The following is initialization, and is executed once 
% 
if (ischar(f_n) && strcmp(f_n,’initial’)) 

N = length(A);

Ax = A; 

Bx = B; 

register = zeros(1,N);

y_n = 0; 

else


% Filtering: (Note that a Direct Form II filter needs only a single 
% shift register.) 

x = 0; y = 0;  
for J = N:-1:2 

register(J) = register(J-1); % Move along the shift register

x = x - Ax(J)*register(J);

y = y +  Bx(J)*register(J);


end

x = x + f_n;

y_n = y +  Bx(1)*x;

register(1) = x;


end 

4 Transposed Direct Forms 

The transposed forms result from the transposition theorem from signal-flow graph theory, 
which states that in a signal-flow graph if 

• The arrows on all graph branches are reversed. 

• Branch points become summers, and summers become branch points. 

• The input and output are swapped, 

then the input/output relationships remain unchanged. The same applies to block diagrams. 

4.1 Transposed Transversal FIR Filter 

The transposed FIR structure is shown below: 
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% ------------------------------------------------------------------------
% 2.161 Classroom Example - firtdf - Demonstration Transposed FIR Direct 
% Form implementation. 
% Usage : 1) Initialization: 
% y = firtdf(’initial’, b) 
% where b, a are the numerator and denominator polynomial 
% coefficients. Example: 
%  b = [1 2 3 4 5 4 3 2 1];  
% y = firtdf(’initial’,b); 
% 
% Note: firtdf returns y = 0 for  initialization 
% 2) Filtering: 
% y_out = firtdf(f_{in}); 
% where f_in is a single input value, and 
% y_out is the computed output value. 
% Example: To compute the step response: 
% for j=1:100 
% y(j) = firtdf(1); 
% end 
% ------------------------------------------------------------------------
% 
function y_n = firtdf(f_n,B) 
persistent register Bx N 
% 
% The following is initialization, and is executed once 
% 
if (ischar(f_n) && strcmp(f_n,’initial’)) 

N = length(B); 
Bx = B;  
register = zeros(1,N-1); 
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y_n = 0; 

else


% Filtering: 
y_n = register(1) + Bx(1)*f_n; 
% Update for the next iteration 
for J = 1:N-2 

register(J) = register(J+1) + Bx(J+1)*f_n;

end

register(N-1) = Bx(N)*f_n;


end 

4.2 Transposed Direct Form II 

The following diagram shows the result when the transposition theorem is applied to a Direct 
Form II structure. 
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This block diagram simply reorganizes the difference equation as 

N 

yn = b0fn + (bkfn−k − akyn−k) 
k=1 

which is implemented in the MATLAB function iirtdf2() on the next page. 
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% ------------------------------------------------------------------------
% 2.161 Classroom Example - iirtdf2 - Demonstration Transposed IIR Direct 
% Form II implementation. 
% Usage : 1) Initialization: 
% y = iirtdf2(’initial’, b, a) 
% where b, a are the numerator and denominator polynomial 
% coefficients. Example: 
% [b,a] = butter(7,0.4); 
% y = iirtdf2(’initial’,b,a); 
% Note: iirdf2 returns y = 0 for  initialization 
% 2) Filtering: 
% y_out = iirtdf2(f_{in}; 
% where f_in is a single input value, and 
% y_out is the computed output value. 
% Example: To compute the step response: 
% for j=1:100 
% y(j) = iirtdf2(1); 
% end 
% ------------------------------------------------------------------------
% 
function y_n = iirtdf2(f_n,B,A) 
persistent register Bx Ax N 
% 
% The following is initialization, and is executed once 
% 
if (ischar(f_n) && strcmp(f_n,’initial’)) 

N = length(A);

Ax = A; 

Bx = B; 

register = zeros(1,N-1);

y_n = 0; 

else


% Filtering: (Note that a Transposed Direct Form II filter needs only a single 
% register.) Also note that this is not strictly a shift register. 

y_n = register(1) + Bx(1)*f_n; 
% Update for the next iteration 
for J = 1:N-2 

register(J) = register(J+1) + Bx(J+1)*f_n - Ax(J+1)*y_n; 
end 
register(N-1) = Bx(N)*f_n - Ax(N)*y_n; 

end 

Coefficient Sensitivity in Direct Form Filters 

In practice high-order IIR Direct Form filters are rarely used because of the sensitivity of pole and 
zero positions to small perturbations in the values of the coefficients ak and bk in the difference 
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equation. If the transfer function is 
�M −1A(z) k=0 bkz

H(z) =  
B(z) 

= 
1 +  

�N
k=1 akz−1 

, 

and the poles are clustered near the unit circle, then small perturbations in any of the ak from 
the desired value (perhaps because of finite precision limitations) may cause the filter to become 
unstable. 

To demonstrate this, consider a low-pass filter with 

N N � � � �−1 −1A(z) = 1 +  akz = 1 − pkz 
k=1 k=1 

where the poles pk are within the unit circle, but close to z = 1, and write pk = 1 +  εk, where 
|εk| � 1. 

Now let a single (arbitrary) coefficient ar be be perturbed by δ to 

ar 
′ = ar + δ 

so that the denominator polynomial becomes 

N 

A′(z) = 1 +  akz −1 + δz−r . 
k=1 

As |δ| increases, one or more of the poles may move outside the unit circle, leading to instability. 
It is difficult to define the general condition, but we can easily find the condition that leads to a 
pole migrating to z = 1, since then 

A′(1) = A(1) + δ = 0, 

that is, there will be a pole at z = 1  if  
δ = −A(1), 

or alternatively, if 
N 

δ = (−ε(k). 
k=1 

Example 1 

Consider a low-pass filter 

1 1 
H(z) =  = 

(1 − 0.99z−1) 1 − 2.97z−1 + 2.9403z−2 − 0.970299z−3 

with three poles at z = 0.99. Find the perturbation allowed in any coefficient 
that will create a marginally stable system with a pole at z = 1. Discuss some 
methods of decreasing the sensitivity. 

20–10 



Solution: For the third-order system A(1) = −10−6 , so any change of δ = 
−A(1) = 10−6 in any coefficient will move one of the poles from z = 0.99 to 
z = 1. Any perturbation larger than this will generate an unstable filter. 

Now consider the effect of implementing this filter as a cascade connection of two 
filters, a second-order filter H1(z), and a first-order filter H2(z), that is 

1 1 
H(z) =  H1(z)H2(z) =  . −1(1 − 0.99z−1)2 1 − z

with a pair of difference equations 

xn = 1.98xn−1 − 0.9801xn−2 + fn 

yn = 0.99yn−1 + xn. 

For H1(z), A1(1) = −10−4, while for H2(z) A2(1) = −10−2 and the sensitivity is

significantly reduced.


If the filter is implemented as a cascade connection of three first-order filters,


1 1 1 
H(z) =  H1(z)H2(z)H(3z)(z) =  . . 

1 − z−1 1 − z−1 1 − z−1 

with a set of difference equations 

wn = 0.99wn−1 + fn 

vn = 0.99vn−1 + wn


yn = 0.99yn−1 + vn,


for any of the first-order sections Hk(z), A1(1) = −10−2 , and the coefficient

sensitivity is significantly reduced even further. 

This example demonstrates that the sensitivity to coefficient precision can be often drastically 
reduced by implementing a filter with low order sections. 

5.1 Cascade Structures 

If the transfer function is written in terms of its poles and zeros 
�M1 −1) 

�M2 −1)
H(z) =  �N1 

(1 − ekz

−1) 
�N2 

(1 − gkz
−1)(1 − gkz

−1) 
K=1 K=1

(1 − ckz (1 − dkz−1)(1 − dkzK=1 K=1

where the ck and ek are real poles and zeros, and dk, dk and gk, gk are complex conjugate pole and 
zero pairs, it is common to realize the system as a cascade chain of first- and second-order sections 
(usually Direct Form II): 

A first-order Direct Form II section, implementing a real pole ck and zero ek 

−1 

Hk(z) =  
1 − ekz

−1 ,1 − ckz

as 
yn = ckyn−1 + fn − ekfn−1 

is shown below 
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A second-order Direct Form 2 section, implementing a conjugate pole pair 

dk, dk = r e±j θ 

has a denominator polynomial 

(1 − dkz −1)(1 − dkz −1) = 1  − 2r cos(θ)z −1 + r 2 z −2 

and when paired with a pair of zeros (either real, or a complex conjugate pair) to give a transfer 
function 

1 − b1z
−1 + b2z

−2 

H(z) =  
1 − 2r cos(θ)z−1 + r2z−2 

and difference equation 

yn = 2r cos(θ)yn−1 + r 2 yn−2 + fn + b1fn−1 + b2fn−2 

is shown below 

� � � 

� � � 

� 

� 

� 

� 
� � �� 

� 
� �  

 � 	 � �  � � � 

Example 2 

Implement the system 

0.04756z3 + 0.14273z2 + 0.14273z + 0.04756 
H(z) =  

z3 − 1.3146z2 + 1.17043z − 0.47524 

as a set of cascaded first- and second-order systems. 

Solution: Factor the transfer function and rewite as 

0.04756(1 + z−1)3 

H(z) =  . 
(1 − 0.6711z−1 + 0.7386z−2)(1 − 0.6435z−1) 
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Implement the filter as a cascaded pair 

0.04756(1 + 2z−1 + z−2)
H1(z) =  

1 − 0.6711z−1 + 0.7386z−2 

1 +  z−1 

H2(z) =  
1 − 0.6435z−1 

with a pair of difference equations 

xn = 0.6711xn−1 − 0.7386xn−2 + 0.04756(fn + 2fn−2 + fn−2) 

yn = 0.6435yn−1 + xn + xn−1. 

There is a lot of flexibility in choosing which zeros to associate with the poles of each low order 
section, and how to distribute the overall gain between the sections. A general (rule-of-thumb) 
procedure is 

(1) Select the poles closest to the unit circle. 

(2) Find the closest zeros to those poles. 

(3) Combine into a second-order section. 

(4) Repeat until all zeros are accounted for. 

5.2 Parallel Structures 

A high order filter may also be realized as a set of parallel second- and first-order sections using 
partial fractions, and implemented as 

H(z) =  H1(z) +  H2(z) +  H3(z) . . . + HN (z) 

so that 
Y (z) = (H1(z) +  H2(z) +  H3(z) . . . + HN (z)) F (z) 
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Example 3 

Implement the system of Example 2 as a parallel realization 

0.04756z3 + 0.14273z2 + 0.14273z + 0.04756 
H(z) = 

z3 − 1.3146z2 + 1.17043z − 0.47524 

Solution: Using a partial fraction expansion 

H(z) = 0.0476 + 
0.2929 .0877z − 0.2271 

. 
2z − 0.6435 

− 
z − 0.6711z + 0.7386 

Implement as three sections 

H1(z) = 0.0476 
0.2929z−1 

H2(z) = 
1 − 0.6435z−1 

.0877z−1 − 0.2271z−2 

H3(z) = −
1 − 0.6711z−1 + 0.7386z−2 

with difference equations 

un = 0.0476fn 

vn = 0.6435vn−1 + 0.2929fn−1 

wn = 0.6711wn−1 − 0.7386wn−2 + 0.0877fn−1 − 0.2271fn−2 

yn = un + vn − wn 
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