13.42 Lecture: Ocean Waves Spring 2005

Alexandra H. Techet MIT Ocean Engineering

Ocean Waves

Photos removed for copyright reasons.

World Meteorological Org. Sea State Codes			
Sea State	Significant Wave Height		Description
Code	Range	Mean	
0	0 (meters)	0 (meters)	Calm (glassy)
1	0-0.1	0.05	Calm (rippled)
2	0.1-0.5	0.3	Smooth (mini-waves)
3	0.5-1.25	0.875	Slight
4	1.25-2.5	1.875	Moderate
5	2.5-4.0	3.25	Rough
6	4.0-6.0	5.0	Very Rough
7	6.0-9.0	7.5	High
8	9.0-14.0	11.5	Very High
9	> 14.0	> 14.0	Huge

Wind Generated Waves

- Wind blows over long distance and long period time before sea state is fully developed.
- When wind speed matches wave crest phase speed the phase speed is maximized. Thus the limiting frequency is dependent on the wind speed due to the dispersion relationship.

$$U_{wind} \approx C_p = \omega / k = g / \omega$$

Limiting frequency: $\omega_c \approx g / U_{wind}$

Typical Spectrum

$$S^+(\omega) = \frac{A}{\omega^5} e^{-B/\omega^4}$$

Based on measured spectra and theoretical results, several standard forms have been developed.

Figure by MIT OCW. After Faltinsen (1993).

Figure by MIT OCW. After Faltinsen (1993).

Figure by MIT OCW. After Faltinsen (1993).

Figure by MIT OCW. After Faltinsen (1993).

Long Term Statistics

- Over the long term the sea is not stationary.
- We can represent long term stats as the sum of several short term statistics by piecing together a group of storms with different durations and significant wave heights.

Storm Statistics

- For each storm (i) we use the significant wave height and average period to construct a spectrum and then find the short term statistics.
- For structural analysis the failure level is a large quantity compared to the rms value, so we use the rate of exceeding some level a_0 .

Observed Wave Heights

Sea conditions reported by sailors estimating the average wave height and period. It was found that this is VERY close to the significant wave height.

Hogben and Lumb (1967)

 $H^{1/3} = 1.06 H_v$ (meters)

 $\overline{T} = 1.12 T_v$ (seconds)

 $T_z = 0.73 T_v$ (seconds)

Nordenstrom (1969) $H^{1/3} = 1.68 (H_v)^{0.75} (meters)$

 \overline{T} = 2.83 (T_v)^{0.44} (seconds)

Use these...