Symmetry of Stress Tensor

Imagine an arbitrary fluid element which in 2-D is a rectangle with width δx_{1} in the $x, 1$ direction and height δx_{2} in the $y, 2$ direction; the element also has a width δx_{3} in the $z, 3$ direction (Figure 1). Stresses acting on each face can be calculated using the values at point O (center of the element) and applying a Taylor series expansion in each direction:

Shear stress acting on the right wall: $\tau_{12} \mid O+\delta \tau_{a}$
Shear stress acting on the left wall: $\left.\tau_{12}\right|_{O}-\delta \tau_{a}$
Shear stress acting on the bottom wall: $\left.\tau_{21}\right|_{O}-\delta \tau_{b}$
Shear stress acting on the top wall: $\left.\tau_{21}\right|_{O}+\delta \tau_{b}$
in which:

$$
\begin{aligned}
& \delta \tau_{a}=\frac{\partial \tau_{12}}{\partial x_{1}}\left(\delta x_{1} / 2\right) \\
& \delta \tau_{b}=\frac{\partial \tau_{21}}{\partial x_{2}}\left(\delta x_{2} / 2\right)
\end{aligned}
$$

Figure 1: Taylor series expansion for the shear stresses acting on a material element of size $\delta x_{1}, \delta x_{2}$.

Knowing that the normal stresses acting on each plane will not lead to any net torque around axis x_{3} passing through point O one can calculate the net exerted torque on the element $\left(M_{O}\right)$ by accounting for all the shear stresses acting on the element:

$$
\begin{aligned}
\sum M_{O}= & \left(\tau_{12}+\delta \tau_{a}\right)\left(\delta x_{2} \delta x_{3}\right)\left(\delta x_{1} / 2\right)+\left(\tau_{12}-\delta \tau_{a}\right)\left(\delta x_{2} \delta x_{3}\right)\left(\delta x_{1} / 2\right) \\
& -\left(\tau_{21}+\delta \tau_{b}\right)\left(\delta x_{1} \delta x_{3}\right)\left(\delta x_{2} / 2\right)-\left(\tau_{21}-\delta \tau_{b}\right)\left(\delta x_{1} \delta x_{3}\right)\left(\delta x_{2} / 2\right)
\end{aligned}
$$

Which can be simplified to give:

$$
\begin{equation*}
\sum M_{O}=\left(\tau_{12}-\tau_{21}\right) \delta x_{1} \delta x_{2} \delta x_{3} \tag{1}
\end{equation*}
$$

On the other hand we know that the following holds:

$$
\sum M_{O}=I \dot{\omega}_{3}
$$

in which I is the moment of inertia around x_{3} axis passing through point O and for a cuboidal element it is:

$$
\begin{equation*}
I=\frac{\rho}{12} \delta x_{1} \delta x_{2} \delta x_{3}\left(\delta x_{1}^{2}+\delta x_{2}^{2}\right) \tag{2}
\end{equation*}
$$

Combining (1) and (2) will result in:

$$
\dot{\omega}_{3}=\frac{12}{\rho} \frac{\tau_{12}-\tau_{21}}{\delta x_{1}^{2}+\delta x_{2}^{2}}
$$

It is easy to see that if one shrinks the element to a very small volume (i.e. δx_{1} and $\delta x_{2} \rightarrow 0$) the rotational acceleration of the element $\left(\omega_{3}\right)$ will diverge to infinity unless the shear stress difference also tends to zero at least as fast as $\delta x_{i}^{2} \rightarrow 0$ (thus $\tau_{12}-\tau_{21}=0$). Since infinite rotational acceleration is not physically possible the stress tensor should be symmetric, $\tau_{i j}=$ $\tau_{j i} .{ }^{1}$

[^0]MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ The mentioned proof is true in the absence of magneto-hydrodynamic forces or other non-conservative body forces.

