2.29 Numerical Fluid Mechanics Spring 2015 - Lecture 7

REVIEW Lecture 6:

- Direct Methods for solving linear algebraic equations
- LU decomposition/factorization
- Separates time-consuming elimination for \mathbf{A} from that for b/B

$$
\overline{\mathbf{A}}=\overline{\overline{\mathbf{L}}} \cdot \overline{\overline{\mathbf{U}}} \longrightarrow \begin{aligned}
& \overline{\overline{\mathbf{L}}} \vec{y}=\vec{b} \\
& \overline{\mathbf{U}} \vec{x}=\vec{y}
\end{aligned}
$$

- Derivation, assuming no pivoting needed: $a_{i j}=\sum_{k=1}^{\min (i, j)} m_{i k} a_{k j}^{(k)}$
- Number of Ops: Same as for Gauss Elimination
- Pivoting: Use pivot element "pointer vector"
- Variations: Doolittle and Crout decompositions, Matrix Inverse
- Error Analysis for Linear Systems
- Matrix norms
- Condition Number for Perturbed RHS and LHS: $K(\overline{\overline{\mathbf{A}}})=\left\|\overline{\overline{\mathbf{A}}}^{-1}\right\|\|\mid \overline{\overline{\mathbf{A}}}\|$
- Special Matrices: Intro

TODAY (Lecture 7): Systems of Linear Equations III

- Direct Methods
- Gauss Elimination
- LU decomposition/factorization
- Error Analysis for Linear Systems
- Special Matrices: LU Decompositions
- Tri-diagonal systems: Thomas Algorithm
- General Banded Matrices
- Algorithm, Pivoting and Modes of storage
- Sparse and Banded Matrices
- Symmetric, positive-definite Matrices
- Definitions and Properties, Choleski Decomposition
- Iterative Methods
- Jacobi's method
- Gauss-Seidel iteration
- Convergence

Reading Assignment

- Chapters 11 of "Chapra and Canale, Numerical Methods for Engineers, 2006/2010/2014."
- Any chapter on "Solving linear systems of equations" in references on CFD references provided. For example: chapter 5 of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, $3^{\text {rd }}$ edition, 2002"

Special Matrices

- Certain Matrices have particular structures that can be exploited, i.e.
- Reduce number of ops and memory needs
- Banded Matrices:
- Square banded matrix that has all elements equal to zero, excepted for a band around the main diagonal.
- Frequent in engineering and differential equations:
- Tri-diagonal Matrices
- Wider bands for higher-order schemes
- Gauss Elimination or LU decomposition inefficient because, if pivoting is not necessary, all elements outside of the band remain zero (but direct GE/LU would manipulate these zero elements anyway)
- Symmetric Matrices
- Iterative Methods:
- Employ initial guesses, than iterate to refine solution
- Can be subject to round-off errors

Special Matrices: Tri-diagonal Systems Example

Forced Vibration of a String

Consider the case of a Harmonic excitation

$$
f(x, t)=-f(x) \cos (\omega t)
$$

Applying Newton's law leads to the wave equation:
With separation of variables, one obtains the equation for modal amplitudes, see eq. (1) below:

Example of a travelling pluse:

$$
\left\{\begin{array}{l}
Y_{t t}-c^{2} Y_{x x}=f(x, t) \\
Y(x, t)=\tau(t) y(x)
\end{array}\right.
$$

Differential Equation for the amplitude: $\quad \frac{d^{2} y}{d x^{2}}+k^{2} y=f(x)$

Boundary Conditions: $\quad y(0)=0, y(L)=0$

Special Matrices: Tri-diagonal Systems

Forced Vibration of a String

Harmonic excitation

$$
f(x, t)=f(x) \cos (\omega t)
$$

Differential Equation:

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+k^{2} y=f(x) \tag{1}
\end{equation*}
$$

Boundary Conditions:

$$
y(0)=0, \quad y(L)=0
$$

Finite Difference

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{x_{i}} \simeq \frac{y_{i-1}-2 y_{i}+y_{i+1}}{h^{2}}+O\left(h^{2}\right)
$$

Discrete Difference Equations

$$
y_{i-1}+\left((k h)^{2}-2\right) y_{i}+y_{i+1}=f\left(x_{i}\right) h^{2}
$$

Matrix Form:

Tridiagonal Matrix

If $k h<1$ or $k h>\sqrt{3}$ symmetric, negative or positive definite: No pivoting needed

Note: for $0<\mathrm{kh}<1$ Negative definite $=>$ Write: $\mathbf{A}^{\prime}=-\mathbf{A}$ and $\bar{y}^{\prime}=-\bar{y}^{\prime}$ to render matrix positive definite

Special Matrices: Tri-diagonal Systems

General Tri-diagonal Systems: Bandwidth of 3

$$
\left[\begin{array}{ccccccc}
a_{1} & c_{1} & \cdot & \cdot & \cdot & \cdot & 0 \\
b_{2} & a_{2} & c_{2} & & & & \cdot \\
\cdot & & \cdot & \cdot & & & \cdot \\
\cdot & & b_{i} & a_{i} & c_{i} & & \cdot \\
\cdot & & & \cdot & \cdot & & \cdot \\
0 & \cdot & \cdot & \cdot & \cdot & b_{n} & a_{n}
\end{array}\right] \overline{\mathbf{x}}=\left\{\begin{array}{l}
f_{1} \\
\cdot \\
\cdot \\
f_{i} \\
\cdot \\
\cdot \\
f_{n}
\end{array}\right\} \quad \overline{\overline{\mathbf{L}}=\left[\begin{array}{cccccc}
1 & & \cdot & \cdots & \cdot & 0 \\
\beta_{2} & 1 & & & & \cdot \\
\cdot & & \cdot & \cdot & & \cdot \\
\cdot & \beta_{i} & 1 & & & \cdot \\
\cdot & & \cdot & \cdot & & \cdot \\
0 & \cdot & \cdot & \cdot & \cdot & \beta_{n} \\
1
\end{array}\right], ~}
$$

LU Decomposition

Three steps for LU scheme:

$$
\left\{\begin{array}{l}
\overline{\overline{\mathbf{L}} \overline{\mathbf{y}}=\overline{\mathbf{f}}} \\
\overline{\overline{\mathbf{U}} \overline{\mathbf{x}}=\overline{\mathbf{y}} \longrightarrow} \overline{\overline{\mathbf{U}}}=\left[\begin{array}{cccccc}
\alpha_{1} & c_{1} & \cdot & \cdot & \cdot & 0 \\
& \alpha_{2} & c_{2} & & & \cdot \\
\cdot & & \cdot & \cdot & & \\
. & & & \alpha_{i} & c_{i} & \\
\hline
\end{array}\right]
\end{array}\right.
$$

1. Decomposition (GE): $a_{i j}^{(k+1)}=a_{i j}^{(k)}-m_{i k} a_{k j}^{(k)}, m_{i k}=a_{i k}^{(k)} / a_{k k}^{(k)}$
2. Forward substitution $\quad \overline{\overline{\mathrm{L}}} \overline{\bar{y}}=\overline{\mathrm{f}}$
3. Backward substitution $\overline{\overline{\mathbf{U}}} \overline{\mathbf{x}}=\overline{\mathbf{y}}$

Special Matrices: Tri-diagonal Systems Thomas Algorithm

By identification with the general LU decomposition, $\quad a_{i j}^{(k+1)}=a_{i j}^{(k)}-m_{i k} a_{k j}^{(k)}, \quad m_{i k}=a_{i k}^{(k)} / a_{k k}^{(k)}$

$$
\overline{\overline{\mathbf{L}}}=\left[\begin{array}{cccccc}
1 & & \cdot & \cdot & \cdot & \cdot \\
\beta_{2} & 1 & & & & 0 \\
\cdot & & \cdot & \cdot & & \\
\cdot & \beta_{i} & 1 & & & \cdot \\
\cdot & & \cdot & \cdot & & \cdot \\
0 & \cdot & \cdot & \cdot & \cdot & \beta_{n}
\end{array}\right]
$$

one obtains,

1. Factorization/Decomposition $\quad \alpha_{1}=a_{1}$

$$
\beta_{k}=\frac{b_{k}}{\alpha_{k-1}}, \quad \alpha_{k}=a_{k}-\beta_{k} c_{k-1}, k=2,3, \ldots n
$$

2. Forward Substitution

$$
y_{1}=f_{1}, \quad y_{i}=f_{i}-\beta_{i} y_{i-1}, i=2,3, \ldots n
$$

3. Back Substitution

$$
x_{n}=\frac{y_{n}}{\alpha_{n}}, \quad x_{i}=\frac{y_{i}-c_{i} x_{i+1}}{\alpha_{i}}, i=n-1, \ldots 1
$$

Number of Operations: Thomas Algorithm

LU Factorization: Forward substitution:
Back substitution:
Total:
$3^{*}(n-1)$ operations
2*($n-1$) operations
$3^{*}(n-1)+1$ operations
$8^{\star}(n-1) \sim O(n)$ operations

Special Matrices: General, Banded Matrix

p super-diagonals
q sub-diagonals
$w=p+q+1$ bandwidth
General Banded Matrix $\quad(p \neq q)$

$$
\left.\begin{array}{c}
j>i+p \\
i>j+q
\end{array}\right\} a_{i j}=0
$$

Banded Symmetric Matrix ($\mathrm{p}=\mathrm{q}=\mathrm{b}$)

$$
\begin{aligned}
& a_{i j}=a_{j i}, \quad|i-j| \leq b \\
& a_{i j}=a_{j i}=0, \quad|i-j|>b
\end{aligned}
$$

$w=2 b+1$ is called the bandwidth b is the half-bandwidth

Special Matrices: General, Banded Matrix

LU Decomposition via Gaussian Elimination If No Pivoting: the zeros are preserved

Special Matrices: General, Banded Matrix

LU Decomposition via Gaussian Elimination With Partial Pivoting (by rows):

Consider pivoting the 2 rows as below:

Then, the bandwidth of L remains unchanged,

$$
m_{i j}=0 \quad \text { if } \quad j>i \quad \text { or } \quad i>j+q
$$

but the bandwidth of U becomes as that of A

$$
\begin{gathered}
u_{i j}=0 \quad \text { if } \quad i>j \quad \text { or } \quad j>i+p+\underline{q} \\
w=p+2 q+1 \text { bandwidth }
\end{gathered}
$$

Special Matrices: General, Banded Matrix
 Compact Storage

Special Matrices: Sparse and Banded Matrix ‘Skyline’ Systems
 (typically for symmetric matrices)

‘Skyline’

Skyline storage applicable when no pivoting is needed, e.g. for banded, symmetric, and positive definite matrices: FEM and FD methods. Skyline solvers are usually based on Cholesky factorization (which preserves the skyline)

Special Matrices: Symmetric (Positive-Definite) Matrix

Symmetric Coefficient Matrices:

- If no pivoting, the matrix remains symmetric after Gauss Elimination/LU decompositions Proof: Show that if $a_{i j}^{(k)}=a_{j i}^{(k)}$ then $a_{i j}^{(k+1)}=a_{j i}^{(k+1)} \quad$ using:

$$
a_{i j}^{(k+1)}=a_{i j}^{(k)}-m_{i k} a_{k j}^{(k)}, \quad m_{i k}=a_{i k}^{(k)} / a_{k k}^{(k)}
$$

- Gauss Elimination symmetric (use only the upper triangular portion of \mathbf{A}):

$$
\begin{aligned}
& a_{i j}^{(k+1)}=a_{i j}^{(k)}-m_{i k} a_{k j}^{(k)} \\
& m_{i k}=\frac{a_{k i}^{(k)}}{a_{k k}^{(k)}}, \quad i=k+1, k+2, \ldots, n \quad j=i, i+1, \ldots, n
\end{aligned}
$$

- About half the total number of ops than full GE

Special Matrices: Symmetric, Positive Definite Matrix

1. Sylvester Criterion:

A symmetric matrix is Positive Definite if and only if: $\operatorname{det}\left(\mathbf{A}_{k}\right)>0$ for $k=1,2, \ldots, n$, where \mathbf{A}_{k} is matrix of k first lines/columns

Symmetric Positive Definite matrices frequent in engineering
2. For a symmetric positive definite A , one thus has the following properties
a) The maximum elements of \mathbf{A} are on the main diagonal
b) For a Symmetric, Positive Definite A: No pivoting needed
c) The elimination is stable: $\left|a_{i i}^{(k+1)}\right| \leq 2\left|a_{i i}^{(k)}\right|$. To show this, use $a_{k j}^{2} \leq a_{k k} a_{j j}$ in

$$
\begin{aligned}
& a_{i j}^{(k+1)}=a_{i j}^{(k)}-m_{i k} a_{k j}^{(k)} \\
& m_{i k}=\frac{a_{k i}^{(k)}}{a_{k k}^{(k)}}, \quad i=k+1, k+2, \ldots, n \quad j=i, i+1, \ldots, n
\end{aligned}
$$

Special Matrices:

Symmetric, Positive Definite Matrix

The general GE $\left\{\begin{array}{l}a_{i j}^{(k+1)}=a_{i j}^{(k)}-m_{i k} a_{k j}^{(k)} \\ m_{i k}=\frac{a_{k i}^{(k)}}{a_{k k}^{(k)}}, \quad i=k+1, k+2, \ldots, n \quad j=i, i+1, \ldots, n\end{array}\right.$

$$
a_{i j}=\sum_{k=1}^{\min (i, j)} m_{i k} a_{k j}^{(k)}
$$

becomes:

$$
\overline{\overline{\mathbf{A}}}=\overline{\overline{\mathbf{L}}} \overline{\mathbf{U}}^{\prime}=\overline{\overline{\mathbf{U}}}^{\dagger} \overline{\mathbf{U}}
$$

Choleski Factorization

$$
\overline{\overline{\mathbf{U}}}^{\dagger}=\left[m_{i j}\right]
$$

$$
\left.\begin{array}{rl}
\text { Complex Conjugate } \\
m_{k k} & =\left(a_{k k}-\sum_{\ell=1}^{k-1} m_{k \ell} \bar{m}_{k \ell}\right)^{1 / 2} \\
m_{i k} & =\frac{a_{i k}-\sum_{\ell=1}^{k-1} m_{i \ell} \bar{m}_{k \ell}}{m_{k k}}, i=k+1, \ldots n
\end{array}\right\} k=1, \ldots n
$$

No pivoting needed
\dagger Complex Conjugate and Transpose

Linear Systems of Equations: Iterative Methods

Sparse (large) Full-bandwidth Systems (frequent in practice)

ps: B and c could be function of k (non-stationary)

Iterative Methods are then efficient

Analogous to iterative methods obtained for roots of equations, i.e. Open Methods: Fixed-point, Newton-Raphson, Secant

Example of Iteration equation

$$
\begin{aligned}
& \mathbf{A} \mathbf{x}=\mathbf{b} \Rightarrow \mathbf{A} \mathbf{x}-\mathbf{b}=0 \\
& \mathbf{x}=\mathbf{x}+\mathbf{A} \mathbf{x}-\mathbf{b} \Rightarrow \\
& \mathbf{x}^{k+1}=\mathbf{x}^{k}+\mathbf{A} \mathbf{x}^{k}-\mathbf{b}=(\mathbf{A}+\mathbf{I}) \mathbf{x}^{k}-\mathbf{b}
\end{aligned}
$$

General Stationary Iteration Formula

$$
\mathbf{x}^{k+1}=\mathbf{B} \mathbf{x}^{k}+\mathbf{c} \quad k=0,1,2, \ldots
$$

Compatibility condition for $\mathbf{A x}=\mathbf{b}$ to be the solution:

$$
\left.\begin{array}{l}
\text { Write } \quad \mathbf{c}=\mathbf{C} \mathbf{b} \\
\mathbf{A}^{-1} \mathbf{b}=\mathbf{B A}^{-1} \mathbf{b}+\mathbf{C} \mathbf{b}
\end{array}\right\} \Rightarrow(\mathbf{I}-\mathbf{B}) \mathbf{A}^{-1}=\mathbf{C} \text { or } \mathbf{B}=\mathbf{I}-\mathbf{C} \mathbf{A}
$$

Linear Systems of Equations: Iterative Methods Convergence

Convergence

$$
\begin{aligned}
& \left\|\overline{\mathbf{x}}^{(k+1)}-\overline{\mathbf{x}}\right\| \rightarrow 0 \text { for } k \rightarrow \infty \\
& \text { Iteration }- \text { Matrix form } \\
& \overline{\mathbf{x}}^{(k+1)}=\overline{\overline{\mathbf{B}}} \overline{\mathbf{x}}^{(k)}+\overline{\mathbf{c}}, k=0, \ldots
\end{aligned}
$$

$|\mid \mathrm{B} \|<1$ for a chosen matrix norm Infinite norm often used in practice

$$
\begin{aligned}
& \|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|\alpha_{i j}\right| \\
& \|A\|_{\infty}=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|\alpha_{i j}\right| \\
& \|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|\alpha_{i j}\right|^{2}\right)^{1 / 2} \\
& \|A\|_{2}=\sqrt{\lambda_{\max }\left(A^{*} A\right)}
\end{aligned}
$$

"Maximum Column Sum"

"Maximum Row Sum"
"The Frobenius norm" (also called Euclidean norm)", which for matrices differs from:
"The l-2 norm" (also called spectral norm)

Linear Systems of Equations: Iterative Methods Convergence: Necessary and Sufficient Condition

Convergence

$$
\begin{aligned}
& \left\|\overline{\mathbf{x}}^{(k+1)}-\overline{\mathbf{x}}\right\| \rightarrow 0 \text { for } k \rightarrow \infty \\
& \text { Iteration }- \text { Matrix form } \\
& \overline{\mathbf{x}}^{(k+1)}=\overline{\overline{\mathbf{B}}} \overline{\mathbf{x}}^{(k)}+\overline{\mathbf{c}}, k=0, \ldots
\end{aligned}
$$

Convergence Analysis

$$
\begin{aligned}
& \overline{\mathbf{x}}^{(k+1)}=\overline{\overline{\mathbf{B}}} \overline{\mathbf{x}}^{(k)}+\overline{\mathbf{c}} \\
& \overline{\mathbf{x}}=\overline{\overline{\mathbf{B}}} \overline{\mathbf{x}}+\overline{\mathbf{c}} \\
& \Rightarrow \overline{\overline{\mathbf{x}}^{(k+1)}-\overline{\mathbf{x}}}=\overline{\overline{\mathbf{B}}}\left(\overline{\mathbf{x}}^{(k)}-\overline{\mathbf{x}}\right) \\
&=\overline{\overline{\mathbf{B}}} \cdot \overline{\overline{\mathbf{B}}}\left(\overline{\mathbf{x}}^{(k-1)}-\overline{\mathbf{x}}\right) \\
& \cdot \\
&=\overline{\overline{\mathbf{B}}}^{k+1}\left(\overline{\mathbf{x}}^{(0)}-\overline{\mathbf{x}}\right) \\
&\left\|\overline{\mathbf{x}}^{(k+1)}-\overline{\mathbf{x}}\right\| \leq\left\|\overline{\mathbf{B}}^{k+1}\right\|\left\|\overline{\mathbf{x}}^{(0)}-\overline{\mathbf{x}}\right\| \leq\|\overline{\overline{\mathbf{B}}}\|^{k+1}\left\|\overline{\mathbf{x}}^{(0)}-\overline{\mathbf{x}}\right\|
\end{aligned}
$$

Necessary and Sufficient Condition for Convergence:
Spectral radius of \mathbf{B} is smaller than one: $\rho(\mathbf{B})=\max _{i=1 . . n}\left|\lambda_{i}\right|<1$, where $\lambda_{i}=\operatorname{eigenvalue}\left(\mathbf{B}_{n \times n}\right)$ (proof: use eigendecomposition of \mathbf{B})
(This ensures ||B\|<1)

MIT OpenCourseWare
http://ocw.mit.edu

2.29 Numerical Fluid Mechanics

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

