2.29 Numerical Fluid Mechanics Spring 2015 - Lecture 21

REVIEW Lecture 20: Time-Marching Methods and ODEs-IVPs

- Time-Marching Methods and ODEs - Initial Value Problems
- Euler's method

$$
\frac{d \overline{\boldsymbol{\Phi}}}{d t}=\mathbf{B} \overline{\boldsymbol{\Phi}}+(\mathbf{b c}) \quad \text { or } \quad \frac{d \overline{\boldsymbol{\Phi}}}{d t}=\mathbf{B}(\overline{\boldsymbol{\Phi}}, t) ; \quad \text { with } \overline{\boldsymbol{\Phi}}\left(t_{0}\right)=\overline{\boldsymbol{\Phi}}_{0}
$$

- Taylor Series Methods
- Error analysis: for two time-levels, if truncation error is of $O\left(h^{\mathrm{n}}\right)$, the global error is of $O\left(h^{\mathrm{n}-1}\right)$
- Simple $2^{\text {nd }}$ order methods
- Heun's Predictor-Corrector and Midpoint Method (belong to Runge-Kutta's methods)
- To achieve higher accuracy in time: utilize information (known values of the derivative in time, i.e. the RHS f) at more points in time, equate to Taylor series
- Runge-Kutta Methods
- Additional points are between t_{n} and $t_{\mathrm{n}+1}$
- Multistep/Multipoint Methods: Adams Methods

$$
\phi^{n+1}-\phi^{n}=\int_{t_{n}}^{t_{n+1}} f(t, \phi) d t
$$

- Additional points are at past time steps
- Practical CFD Methods
- Implicit Nonlinear systems
- Deferred-correction Approach

TODAY (Lecture 21): End of Time-Marching Methods, Grid Generation

- Time-Marching Methods and ODEs - IVPs: End
- Multistep/Multipoint Methods
- Implementation of Implicit Time-Marching: Nonlinear systems
- Deferred-correction Approach
- Complex Geometries
- Different types of grids
- Choice of variable arrangements: Cartesian or grid-oriented velocity, staggered or collocated var.
- Grid Generation
- Basic concepts and structured grids
- Stretched grids
- Algebraic methods (for stretched grids)
- General coordinate transformation
- Differential equation methods
- Conformal mapping methods
- Unstructured grid generation
- Delaunay Triangulation
- Advancing Front method

References and Reading Assignments Time-Marching

- Chapters 25 and 26 of "Chapra and Canale, Numerical Methods for Engineers, 2014/2010/2006."
- Chapter 6 on "Methods for Unsteady Problems" of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, 3rd edition, 2002"
- Chapter 6 on "Time-Marching Methods for ODE's" of "H. Lomax, T. H. Pulliam, D.W. Zingg, Fundamentals of Computational Fluid Dynamics (Scientific Computation). Springer, 2003"

Multistep/Multipoint Methods

- Additional points are at time steps at which data has already been computed
- Adams Methods: fitting a (Lagrange) polynomial to the derivatives at a number of points in time
- Explicit in time (up to t_{n}): Adams-Bashforth methods

$$
\phi^{n+1}-\phi^{n}=\sum_{k=n-K}^{n} \beta_{k} f\left(t_{k}, \phi^{k}\right) \Delta t
$$

- Implicit in time (up to t_{n+1}): Adams-Moulton methods

$$
\phi^{n+1}-\phi^{n}=\sum_{k=n-K}^{n+1} \beta_{k} f\left(t_{k}, \phi^{k}\right) \Delta t
$$

- Coefficients β_{k} 's can be estimated by Taylor Tables:
- Fit Taylor series so as to cancel as high-order terms as possible

Example: Taylor Table for the Adams-Moulton 3-steps (4 time-nodes) Method

Denoting $h \equiv \Delta t, \phi \equiv u, \quad \frac{\mathrm{~d} u}{d t}=u^{\prime}=f(t, u)$ and $\underline{u_{n}{ }_{n}=f\left(t_{n}, u^{n}\right)}$, one obtains for $K=2$:
$u^{n+1}-u^{n}=\sum_{k=-K}^{1} \beta_{k} f\left(t_{n+k}, u^{n+k}\right) \Delta t=h\left[\beta_{1} f\left(t_{n+1}, u^{n+1}\right)+\beta_{0} f\left(t_{n}, u^{n}\right)+\beta_{-1} f\left(t_{n-1}, u^{n-1}\right)+\beta_{-2} f\left(t_{n-2}, u^{n-2}\right)\right]$
Taylor Table (at t_{n}):

- The first row (Taylor series) + next 5 rows (Taylor series for each term) must sum to zero
- This can be satisfied up to the $5^{\text {th }}$ column (cancels $4^{\text {th }}$ order term)
- Hence, the AM method with 4-time levels is $4^{\text {th }}$ order accurate $\quad-h \beta_{-2} u_{n-2}^{\prime}$

	u_{n}	$h \cdot u_{n}^{\prime}$	$h^{2} \cdot u_{n}^{\prime \prime}$	$h^{3} \cdot u_{n}^{\prime \prime \prime}$	$h^{4} \cdot u_{n}^{\prime \prime \prime \prime}$
u_{n+1}	1	1	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{24}$
$-u_{n}$	-1				
$-h \beta_{1} u_{n+1}^{\prime}$		$-\beta_{1}$	$-\beta_{1}$	$-\beta_{1} \frac{1}{2}$	$-\beta_{1} \frac{1}{6}$
$-h \beta_{0} u_{n}^{\prime}$		$-\beta_{0}$			
$h \beta_{-1} u_{n-1}^{\prime}$		$-\beta_{-1}$	β_{-1}	$-\beta_{-1} \frac{1}{2}$	$\beta_{-1} \frac{1}{6}$
$h \beta_{-2} u_{n-2}^{\prime}$		$-(-2)^{0} \beta_{-2}$	$-(-2)^{1} \beta_{-2}$	$-(-2)^{2} \beta_{-2} \frac{1}{2}$	$-(-2)^{3} \beta_{-2} \frac{1}{6}$

solving for the $\beta_{k}{ }^{\prime} s \Rightarrow \beta_{1}=9 / 24, \quad \beta_{0}=19 / 24, \quad \beta_{-1}=-5 / 24 \quad$ and $\quad \beta_{-2}=1 / 24$

Examples of Adams Methods for Time-Integration

Explicit Methods. (Adams-Bashforth, with ABn meaning $n^{\text {th }}$ order AB)

$$
\begin{array}{lr}
u_{n+1}=u_{n}+h u_{n}^{\prime} & \text { Euler } \\
u_{n+1}=u_{n-1}+2 h u_{n}^{\prime} & \text { Leapfro } \\
u_{n+1}=u_{n}+\frac{1}{2} h\left[3 u_{n}^{\prime}-u_{n-1}^{\prime}\right] & \text { AB2 } \\
u_{n+1}=u_{n}+\frac{h}{12}\left[23 u_{n}^{\prime}-16 u_{n-1}^{\prime}+5 u_{n-2}^{\prime}\right] & \text { AB3 }
\end{array}
$$

Implicit Methods. (Adams-Moulton, with AMn meaning $n^{\text {th }}$ order AM)

$$
\begin{array}{lc}
u_{n+1}=u_{n}+h u_{n+1}^{\prime} & \text { Implicit Euler } \\
u_{n+1}=u_{n}+\frac{1}{2} h\left[u_{n}^{\prime}+u_{n+1}^{\prime}\right] & \text { Trapezoidal (AM2) } \\
u_{n+1}=\frac{1}{3}\left[4 u_{n}-u_{n-1}+2 h u_{n+1}^{\prime}\right] & \text { 2nd-order Backward } \\
u_{n+1}=u_{n}+\frac{h}{12}\left[5 u_{n+1}^{\prime}+8 u_{n}^{\prime}-u_{n-1}^{\prime}\right] & \text { AM3 }
\end{array}
$$

Practical

Multistep Time-Integration Methods for CFD

- High-resolution CFD requires large discrete state vector sizes to store the spatial information
- As a result, up to two times (one on each side of the current time step) have often been utilized (3 time-nodes): $\quad u^{n+1}-u^{n}=h\left[\beta_{1} f\left(t_{n+1}, u^{n+1}\right)+\beta_{0} f\left(t_{n}, u^{n}\right)+\beta_{-1} f\left(t_{n-1}, u^{n-1}\right)\right]$
- Rewriting this equation in a way such that differences w.r.t. Euler's method are easily seen, one obtains ($\theta=0$ for explicit schemes):

$(1+\xi) u^{n+1}=\left[(1+2 \xi) u^{n}-\xi u^{n-1}\right]+h\left[\theta f\left(t_{n+1}, u^{n+1}\right)\right.$				
θ	ξ	φ	Method	Order
0	0	0	Euler	1
1	0	0	Implicit Euler	1
1/2	0	0	Trapezoidal or AM2	2
1	$1 / 2$	0	2nd-order Backward	2
3/4	0	-1/4	Adams type	2
$1 / 3$	$-1 / 2$	-1/3	Lees	2
1/2	$-1 / 2$	-1/2	Two-step trapezoidal	2
5/9	-1/6	$-2 / 9$	A-contractive	2
0	-1/2	0	Leapfrog	2
0	0	$1 / 2$	AB2	2
0	-5/6	$-1 / 3$	Most accurate explicit	3
$1 / 3$	$-1 / 6$	0	Third-order implicit	3
5/12	0	1/12	AM3	3
1/6	$-1 / 2$	$-1 / 6$	Milne	4

- Note that higher order R-K methods in time are now also used, especially low storage R-K.

Numerical Fluid Mechanics

© source unknown. All rights reserved. This content is excluded from our CreativeCommons license. For more information, see http://ocw.mit.edu/fairuse.

Implementation of Implicit Time-Marching Methods: Nonlinear Systems and Larger dimensions

- Consider the nonlinear system (discrete in space):

$$
\frac{d \boldsymbol{\Phi}}{d t}=\mathbf{B}(\boldsymbol{\Phi}, t) ; \text { with } \boldsymbol{\Phi}\left(t_{0}\right)=\boldsymbol{\Phi}_{0}
$$

- For an explicit method in time, solution is straightforward
- For explicit Euler:

$$
\boldsymbol{\Phi}^{n+1}=\boldsymbol{\Phi}^{n}+\mathbf{B}\left(\boldsymbol{\Phi}^{n}, t_{n}\right) \Delta \mathrm{t}
$$

- More general, e.g. AB: $\quad \boldsymbol{\Phi}^{n+1}=\mathbf{F}\left(\boldsymbol{\Phi}^{n}, \boldsymbol{\Phi}^{n-1}, \ldots, \boldsymbol{\Phi}^{n-K}, t_{n}\right) \Delta \mathrm{t}$
- For an implicit method
- For Implicit Euler:

$$
\begin{aligned}
& \boldsymbol{\Phi}^{n+1}=\boldsymbol{\Phi}^{n}+\mathbf{B}\left(\boldsymbol{\Phi}^{n+1}, t_{n+1}\right) \Delta \mathrm{t} \\
& \boldsymbol{\Phi}^{n+1}=\mathbf{F}\left(\boldsymbol{\Phi}^{n+1}, \boldsymbol{\Phi}^{n}, \boldsymbol{\Phi}^{n-1}, \ldots, \boldsymbol{\Phi}^{n-K}, t_{n+1}\right) \Delta \mathrm{t} \\
& \text { or } \\
& \tilde{\mathbf{F}}\left(\boldsymbol{\Phi}^{n+1}, \boldsymbol{\Phi}^{n}, \boldsymbol{\Phi}^{n-1}, \ldots, \boldsymbol{\Phi}^{n-K}, t_{n+1}\right)=0 ; \quad \text { with } \tilde{\mathbf{F}}=\mathbf{F} \Delta \mathrm{t}-\boldsymbol{\Phi}^{n+1}
\end{aligned}
$$

=> a nontrivial scheme is needed to obtain $\boldsymbol{\Phi}^{n+1}$

Implementation of Implicit Time-Marching Methods: Larger dimensions and Nonlinear systems

- Two main options for an implicit method, either:

1. Linearize the RHS at t_{n} :

- Taylor Series: $\quad \mathbf{B}(\boldsymbol{\Phi}, t)=\mathbf{B}\left(\boldsymbol{\Phi}^{n}, t_{n}\right)+\mathbf{J}^{n}\left(\boldsymbol{\Phi}-\boldsymbol{\Phi}^{n}\right)+\left.\frac{\partial \mathbf{B}}{\partial t}\right|^{n}\left(t-t_{n}\right)+O\left(\Delta t^{2}\right)$ for $t_{n} \leq t \leq t_{n+1}$

$$
\text { where } \mathbf{J}^{n}=\left.\frac{\partial \mathbf{B}}{\partial \mathbf{\Phi}}\right|^{n} ; \quad \text { i.e. }\left[\mathbf{J}^{n}\right]_{i j}=\left.\frac{\partial \mathbf{B}_{i}}{\partial \mathbf{\Phi}_{j}}\right|^{n} \quad(\text { Jacobian Matrix) }
$$

- Hence, the linearized system (for the frequent case of system not explicitly function of t):

$$
\frac{d \boldsymbol{\Phi}}{d t}=\mathbf{B}(\boldsymbol{\Phi}) \Rightarrow \frac{d \boldsymbol{\Phi}}{d t}=\mathbf{J}^{n} \boldsymbol{\Phi}+\left[\mathbf{B}\left(\boldsymbol{\Phi}^{n}\right)-\mathbf{J}^{n} \boldsymbol{\Phi}^{n}\right]
$$

2. Use an iteration scheme at each time step, e.g. fixed point iteration (direct), Newton-Raphson or secant method

- Newton-Raphson: $\quad x_{r+1}=x_{r}-\frac{1}{f^{\prime}\left(x_{r}\right)} f\left(x_{r}\right) \Rightarrow \boldsymbol{\Phi}_{r+1}^{n+1}=\boldsymbol{\Phi}_{r}^{n+1}-\left(\left.\frac{\partial \tilde{\mathbf{F}}}{\partial \boldsymbol{\Phi}^{n+1}}\right|_{r}\right)^{-1} \tilde{\mathbf{F}}\left(\boldsymbol{\Phi}_{r}^{n+1}, t_{n+1}\right)$
- Iteration often rapidly convergent since initial guess to start iteration at t_{n} close to unknown solution at t_{n+1}

Deferred-Correction Approaches

- Size of computational molecule affects both storage requirements and effort needed to solve the algebraic system at each time-step
- Usually, we wish to keep only the nearest neighbors of the center node P in the LHS of equations (leads to tri-diagonal matrix or something close to it) \Rightarrow easier to solve linear/nonlinear system
- But, approximations that produce such molecules are often not accurate enough
- Way around this issue?
- Leave only the terms containing the nearest neighbors in the LHS and bring all other more-remote terms to the RHS
- This requires that these terms be evaluated with previous or old values, which may lead to divergence of the iterative scheme
- Better approach?

Deferred-Correction Approaches, Cont'd

- Better Approach
- Compute the terms that are approximated with a high-order approximation explicitly and put them in the RHS
- Take a simpler approximation to these terms (that give a small computational molecule). Insert it twice in the equation, with a + and - sign
- One of these two simpler approximations, keep it in the LHS of the equations (with unknown variables values, i.e. implicit/new). Move the other to the RHS (i.e. computing it explicitly using existing/old values)
- The RHS now contains the difference between two explicit approximations of the same term, and is likely to be small \Rightarrow
- Likely no convergence problems to an iteration scheme (Jacobi, GS, SOR, etc) or gradient descent (CG, etc)
- Once the iteration converges, the low order approximation terms (one explicit, the other implicit) drop out and the solution corresponds to the higher-order approximation
- \Rightarrow Using H \& L for high \& low orders:

$$
\mathbf{A}^{H} \mathbf{x}=\mathbf{b} \quad \rightarrow \mathbf{A}^{L} \mathbf{x}=\mathbf{b}-\left[\mathbf{A}^{H} \mathbf{x}-\mathbf{A}^{L} \mathbf{x}\right]^{\text {old }}
$$

Deferred-Correction Approaches, Cont'd

- This approach can be very powerful and general
- Used when treating higher-order approximations, non-orthogonal grids, corrections needed to avoid oscillation effects, etc
- Since RHS can be viewed as a correction \Rightarrow called deferredcorrection
- Note: both L\&H terms could be implicit in time: use L\&H explicit starter to get first values and then most recent old values in bracket during iterations (similar to Jacobi vs. Gauss Seidel)
- Explicit for H (high-order) term, implicit for L (low-order) term

$$
\mathbf{A}^{H} \mathbf{x}=\mathbf{b} \quad \rightarrow \mathbf{A}^{L} \mathbf{x}_{\text {implicit }}=\mathbf{b}-\left[\mathbf{A}^{H} \mathbf{x}_{\text {explicit }}-\mathbf{A}^{L} \mathbf{x}_{\text {implicit }}\right]^{\text {old }}
$$

- Implicit for both L and H terms (similar to Gauss-Seidel)

$$
\mathbf{A}^{H} \mathbf{x}=\mathbf{b} \rightarrow \mathbf{A}^{L} \mathbf{x}_{\text {implicit }}=\mathbf{b}-\left[\mathbf{A}^{H} \mathbf{x}_{\text {implicit }}-\mathbf{A}^{L} \mathbf{x}_{\text {implicit }}\right]^{\text {old }}
$$

Deferred-Correction Approaches, Cont'd

- Example 1: FD methods with High-order Pade’ schemes
- One can use the PDE itself to express implicit Pade' time derivative $\left(\frac{\partial \phi}{\partial t}\right)_{n+1}$ as a function of ϕ^{n+1} (see homework)
- Or, use deferred-correction (within an iteration scheme of index r):
- In time:

$$
\left(\frac{\partial \phi}{\partial t}\right)_{n}^{r+1}=\left(\frac{\phi_{n+1}-\phi_{n-1}}{2 \Delta t}\right)^{r+1}+\left[\left(\frac{\partial \phi}{\partial t}\right)_{n}^{\text {Pade }}-\frac{\phi_{n+1}-\phi_{n-1}}{2 \Delta t}\right]^{r}
$$

- In space:

$$
\left(\frac{\partial \phi}{\partial x}\right)_{i}^{r+1}=\left(\frac{\phi_{i+1}-\phi_{i-1}}{2 \Delta x}\right)^{r+1}+\left[\left(\frac{\partial \phi}{\partial x}\right)_{i}^{\text {Pade }}-\frac{\phi_{i+1}-\phi_{i-1}}{2 \Delta x}\right]^{r}
$$

- The complete $2^{\text {nd }}$ order CDS would be used on the LHS. The RHS would be the bracket term: the difference between the Pade' scheme and the "old" CDS. When the CDS becomes as accurate as Pade', this term in the bracket is zero
- Note: Forward/Backward DS could have been used instead of CDS, e.g. in time,

$$
\left(\frac{\partial \phi}{\partial t}\right)_{n+1}^{r+1}=\left(\frac{\phi_{n+1}-\phi_{n}}{\Delta t}\right)^{r+1}+\left[\left(\frac{\partial \phi}{\partial t}\right)_{n+1}^{\text {Pade' }}-\frac{\phi_{n+1}-\phi_{n}}{\Delta t}\right]^{r}
$$

Deferred-Correction Approaches, Cont'd

- Example 2 with FV methods: Higher-order Flux approximations
- Higher-order flux approximations are computed with "old values" and a lower order approximation is used with "new values" (implicitly) in the linear system solver:

$$
F_{e}=F_{e}^{L}+\left[F_{e}^{H}-F_{e}^{L}\right]^{\text {old }}
$$

where F_{e} is the flux. For ex., the low order approximation is a UDS or CDS

- Convergence and stability properties are close to those of the low order implicit term since the bracket is often small compared to this implicit term
- In addition, since bracket term is small, the iteration in the algebraic equation solver can converge to the accuracy of higher-order scheme
- Additional numerical effort is explicit with "old values" and thus much smaller than the full implicit treatment of the higher-order terms
- A factor can be used to produce a mixture of pure low and pure high order. This can be used to remove undesired properties, e.g. oscillations of highorder schemes

References and Reading Assignments Complex Geometries and Grid Generation

- Chapter 8 on "Complex Geometries" of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, 3rd edition, 2002"
- Chapter 9 on "Grid Generation" of T. Cebeci, J. P. Shao, F. Kafyeke and E. Laurendeau, Computational Fluid Dynamics for Engineers. Springer, 2005.
- Chapter 13 on "Grid Generation" of Fletcher, Computational Techniques for Fluid Dynamics. Springer, 2003.
- Ref on Grid Generation only:
- Thompson, J.F., Warsi Z.U.A. and C.W. Mastin, "Numerical Grid Generation, Foundations and Applications", North Holland, 1985

Grid Generation and Complex Geometries: Introduction

- Many flows in engineering and science involve complex geometries
- This requires some modifications of the algorithms:
- Ultimately, properties of the numerical solver also depend on the:
- Choice of the grid
- Vector/tensor components (e.g. Cartesian or not)
- Arrangement of the variables on the grid
- Different types of grids:
- Structured grids: families of grid lines such that members of the same family do not cross each other and cross each member of other families only once
- Advantages: simpler to program, neighbor connectivity, resultant algebraic system has a regular structure => efficient solvers
- Disadvantages: can be used only for simple geometries, difficult to control the distribution of grid points on the domain (e.g. concentrate in specific areas)
- Three types (names derived from the shape of the grid):
- H-grid: a grid which can map into a rectangle
- O-grid: one of the coordinate lines wraps around or is "endless". One introduces an artificial cut at which the grid numbering jumps
- C-grid: points on portions of one grid line coincide (used for body with sharp edges)

Grid Generation and Complex Geometries: Structured Grids

H-Type grids
Figure 11.5 (a) Cartesian grid using an approximated profile to represent cylindrical surfaces; (b) predicted flow pattern using a 40×15 Cartesian grid

- Example: create a grid for the flow over a heat exchanger tube bank (only part of it is shown)

Figure 11.6 (a) Non-orthogonal body-fitted grid for the same problem; (b) predicted flow pattern using a 40×15 structured body-fitted grid

- Stepwise 2D Cartesian grid
- Number of points non constant or use masks
- Steps at boundary introduce errors
- vs. non-orthogonal, structured grid
© Prentice Hall. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

(a)

(b)

(a)

(b)

Grid Generation and Complex Geometries: Block-Structured Grids

- Grids for which there is one or more level subdivisions of the solution domain
- Can match at interfaces or not
- Can overlap or not
- Block structured grids with overlapping blocks are sometimes called "composite" or "Chimera" grids
- Interpolation used from one grid to the other
- Useful for moving bodies (one block attached to it and the other is a stagnant grid)
- Special case: Embedded or Nested grids, which can still use different dynamics at different scales

Grid with 3 Blocks, with an O-Type grid (for coordinates around the cylinder)

Fig. 2.2. Example of a 2D block-structured grid which matches at interfaces, used to calculate flow around a cylinder in a channel
Grid with 5 blocks, including H-Type and C-Type, and non-matching interface:

Fig. 2.3. Example of a 2D block-structured grid which does not match at interfaces, designed for calculation of flow around a hydrofoil under a water surface
"composite" or "Chimera" Grid

Fig. 2.4. A composite 2D grid, used to calculate flow around a cylinder in a channel
Grids © Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Grid Generation and Complex Geometries:

Other examples of Block-structured Grids

Figure 11.9 Block-structured mesh for a transonic aerofoil. Inset shows cut cells near aerofoi surface. Also note additional grid refinement in the flow region to capture a shock above the aerofoil
Source: Haselbacher (1999)

© Andreas C. Haselbacher. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Figure 1.7 in Haselbacher, Andreas C. "A grid-transparent numerical method for compressible viscous flows on mixed unstructured grids." PhD diss., Loughborough University, 1999.

Figure 11.10 Block-structured mesh arrangement for an engine geometry, including inlet and exhaust ports, used in engine simulations with KIVA-3V

© Prentice Hall. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Grid Generation and Complex Geometries: Unstructured Grids

- For very complex geometries, most flexible grid is one that can fit any physical domain: i.e. unstructured
- Can be used with any discretization scheme, but best adapted to FV and FE methods
- Grid most often made of:
- Triangles or quadrilaterals in 2D
- Tetrahedra or hexahedra in 3D
- Advantages
- Unstructured grid can be made orthogonal if needed
- Aspect ratio easily controlled
- Grid may be easily refined
- Disadvantages:
(C) Andreas C. Haselbacher. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Figure 1.7 in Haselbacher, Andreas C. "A grid-transparent
- Irregularity of the data structure: nodes locations and $\frac{\text { numerical method for compressibe e iscous flows on mixed }}{\text { unstructured grids." }}$ neighbor connections need to be specified explicitly
- The matrix to be solved is not regular anymore and the size of the band needs to be controlled by node ordering

Unstructured Grids Examples: Multi-element grids

- For FV methods, what matters is the angle between the vector normal to the cell surface and the line connecting the CV centers \Rightarrow
- 2D equilateral triangles are equivalent to a 2D orthogonal grid
- Cell topology is important:
- If cell faces parallel, remember that certain terms in Taylor expansion can cancel \Rightarrow higher accuracy
- They nearly cancel if topology close to parallel
- Ratio of cells' sizes should be smooth
- Generation of triangles or tetrahedra is easier and can be automated, but lower accuracy
- Hence, more regular grid (prisms, quadrilaterals or hexahedra) often

Fig. 9.16. 2D Unstructured grid for Navier-Stokes computations of a multi-element airfoil generated with the hybrid advancing front Delaunay method of Mavriplis [6].
© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. used near boundary where solution often vary rapidly

Complex Geometries: The choice of velocity (vector) components

- Cartesian (used in this course)
- With FD, one only needs to employ modified equations to take into account of non-orthogonal coordinates (change of derivatives due to change of spatial coordinates from Cartesian to non-orthogonal)
- In FV methods, normally, no need for coordinate transformations in the PDEs: a local coordinate transformation can be used for the gradients normal to the cell faces
- Grid-oriented:
- Non-conservative source terms appear in the equations (they account for the re-distribution of momentum between the components)
- For example, in polar-cylindrical coordinates, in the momentum equations:
- Apparent centrifugal force and apparent Coriolis force

Complex Geometries: The choice of variable arrangement

- Staggered arrangements
- Improves coupling $u \leftrightarrow p$
- For Cartesian components when grid lines change by 90 degrees, the velocity component stored at the cell face makes no contribution to the mass flux through that face
- Difficult to use Cartesian

Image by MIT OpenCourseWare.
Variable arrangements on a non-orthogonal grid. Illustrated are a staggered arrangement with (i) contravarient velocity components and (ii) Cartesian velocity components, and (iii) a colocated arrangement with Cartesian velocity components. components in these cases

- Hence, for non-orthogonal grids, grid-oriented velocity components often used
- Collocated arrangements (mostly used here)
- The simplest one: all variables share the same CV
- Requires more interpolation

Classes of Grid Generation

- An arrangement of discrete set of grid points or cells needs to be generated for the numerical solution of PDEs (fluid conservation equations)
- Finite volume methods:
- Can be applied to uniform and non-uniform grids
- Finite difference methods:
- Require a coordinate transformation to map the irregular grid in the physical spatial domain to a regular one in the computational domain
- Difficult to do this in complex 3D spatial geometries
- So far, only used with structured grid (could be used with unstructured grids with polynomials ϕ defining the shape of ϕ around a grid point)
- Three major classes of (structured) grid generation: i) algebraic methods, ii) differential equation methods and iii) conformal mapping methods
- Grid generation and solving PDE can be independent
- A numerical (flow) solver can in principle be developed independently of the grid
- A grid generator then gives the metrics (weights) and the one-to-one correspondence between the spatial-grid and computational-grid

Grid Generation: Basic Concepts for Structured Grids

- Structured Grids (includes curvilinear or non-orthogonal grids)
- Often utilized with FD schemes
- Methods based on coordinate transformations
- Consider irregular shaped physical domain (x, y) in Cartesian coordinates and determine its mapping to the computational domain in the (ξ, η)

Cartesian coordinates

- Increase ξ or η monotonically in physical domain along "curved lines"
- Coordinate lines of the same family do not cross
- Lines of different family don't cross more than once
- Physical grid refined where large errors are expected

Image by MIT OpenCourseWare.
A simply-connected irregular shape in the physical plane is mapped as a rectangle in the computational plane.

- Mapped (computational) region has a rectangular shape:
- Coordinates (ξ, η) can vary from 1 to (I, J), with mesh sizes taken equal to 1
- Boundaries are mapped to boundaries

Grid Generation:
 Basic Concepts for Structured Grids, Cont'd

- The example just shown was the mapping of an irregular, simply connected, region into a rectangle.
- Other configurations are of course possible
- For example, a L-shape domain can be mapped into:
- a regular L-shape
- or into a rectangular shape

Image by MIT OpenCourseWare.

Grid Generation for Structured Grids: Stretched Grids

- Consider a viscous flow solution on a given body, where the velocity varies rapidly near the surface of the body (Boundary Layer)
- For efficient computation, a finer grid near the body and coarser grid away from the body is effective (aims to maintain constant accuracy)
- Possible coordinate transformation: a scaling " $\eta=\log (y)$ " $\leftrightarrow " y=\exp (\eta)$ "

$$
\begin{gathered}
\xi=x \\
\eta=1-\frac{\ln [A(y)]}{\ln B}
\end{gathered} \quad \text { where } A(y)=\frac{\beta+(1-y / h)}{\beta-(1-y / h)} \text { and } \mathrm{B}=\frac{\beta+1}{\beta-1}
$$

The parameter $\beta(1<\beta<\infty)$ is the stretching parameter. As β gets close to 1 , more grid points are clustered to the wall in the physical domain.

- Inverse transformation is needed to map solutions back from ξ, η domain:

$$
\begin{gathered}
x=\xi \\
\frac{y}{h}=\frac{(\beta+1)-(\beta-1) B^{1-\eta}}{1+B^{1-\eta}}
\end{gathered}
$$

(a)
(b)

Fig. 9.4. One-dimensional stretching transformation. (a) Physical plane, (b) computational plane.
© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Grid Generation for Structured Grids: Stretched Grids, Cont'd

- How do the conservation equations change?
- Consider the continuity equation for steady state flow in physical (x, y) space:

$$
\nabla \cdot(\rho \vec{v})=0 \Rightarrow \frac{\partial \rho u}{\partial x}+\frac{\partial \rho v}{\partial y}=0
$$

- In the computational plane, this equation becomes (chain rule)

$$
\left.\begin{array}{l}
\frac{\partial \rho u}{\partial x}=\frac{\partial \rho u}{\partial \xi} \frac{\partial \xi}{\partial x}+\frac{\partial \rho u}{\partial \eta} \frac{\partial \eta}{\partial x} \\
\frac{\partial \rho u}{\partial y}=\frac{\partial \rho v}{\partial \xi} \frac{\partial \xi}{\partial y}+\frac{\partial \rho v}{\partial \eta} \frac{\partial \eta}{\partial y}
\end{array}\right\} \Rightarrow \frac{\partial \rho u}{\partial \xi} \xi_{x}+\frac{\partial \rho u}{\partial \eta} \eta_{x}+\frac{\partial \rho v}{\partial \xi} \xi_{y}+\frac{\partial \rho v}{\partial \eta} \eta_{y}=0
$$

- For our stretching transformation, one obtains:

$$
\xi_{x}=1, \quad \eta_{x}=0, \quad \xi_{y}=0, \quad \eta_{y}=\frac{2 \beta}{h \ln (B)} \frac{1}{\beta^{2}-(1-y / h)^{2}}
$$

- Therefore, the continuity equation becomes:

$$
\frac{\partial \rho u}{\partial \xi}+\frac{\partial \rho v}{\partial \eta} \eta_{y}=0
$$

- This equation can be solved on a uniform grid (slightly more complicated eqn. system), and the solution mapped back to the physical domain using the inverse transform

Grid Generation for Structured Grids: Algebraic Methods: Transfinite Interpolation

- Multi-directional interpolation (Transfinite Interpolation)
- To generate algebraic grids within more complex domains or around more complex configurations, multi-directional interpolations can be used
- They consist of a suite of unidirectional interpolations

- Unidirectional Interpolations (1D curve)

- The Cartesian coordinate vector of any point on a curve $\mathbf{r}(\mathrm{x}, \mathrm{y})$ is obtained as an interpolation between given points that lie on the boundary curves
-How to interpolate? the regulars:
- Lagrange Polynomials: match function values

$$
\vec{r}(i)=\sum_{k=0}^{n} L_{k}(i) \vec{r}_{k} \quad \text { with } \quad L_{k}(i)=\prod_{j=0, j \neq k}^{n} \frac{i-i_{j}}{i_{k}-i_{j}},
$$

- Hermite Polynomials: match both function and $1^{\text {st }}$ derivative values

$$
\vec{r}(i)=\sum_{k=1}^{n} a_{k}(i) \vec{r}_{k}+\sum_{k=1}^{m} b_{k}(i) \vec{r}_{k}^{\prime}
$$

Numerical Fluid Mechanics

Grid Generation for Structured Grids:

Algebraic Methods: Transfinite Interpolation, Cont'd

- Unidirectional Interpolations (1D curve), Cont'd
-Lagrange and Hermite Polynomials fit a single polynomial from one boundary to the next => for long boundaries, oscillations may occur
-Alternative 1: use set of lower order polynomials to form a piece-wise continuous interpolation:
- Spline interpolation (match as many derivatives as possible at interior point junctions), Tension-spline (more localized curvature) and B-splines (allows local modification of the interpolation)
-Alternative 2: use interpolation functions that are not polynomials, usually "stretching functions": exp, tanh, sinh, etc
- Multi-directional or Transfinite Interpolation
-Extends 1D results to 2D or 3D by successive applications of 1D interpolations
-For example, i then j.

Algebraic Methods: Transfinite Interpolation, Cont'd

- Multi-directional or Transfinite Interpolation, Cont'd
- In 2D, the transfinite interpolation can be implemented as follows
- Interpolate position vectors \mathbf{r} in i-direction $=>$ leads to points $\mathbf{f}_{1}=\mathcal{I}_{\mathrm{i}}(\mathbf{r})$ and i-lines
- Evaluate the difference between this result and \mathbf{r} on the j-lines that will be used in the j-interpolation (e.g. 2 differences: one with curve $i=0$ \& one with $i=I$) $\mathbf{r}-\mathbf{f}_{1}$
- Interpolation of the discrepancy in the j-direction: $\mathbf{f}_{2}=\mathcal{I}_{j}\left(\mathbf{r}-\mathbf{f}_{1}\right)$
- Addition of the results of this j -interpolation to the results of the i-interpotion:

$$
\mathbf{r}(i, j)=\mathbf{f}_{1}+\mathbf{f}_{2}
$$

- Of course, Lagrange, Hermite Polynomiäts; Spline and non-polynomial (stretching) functions can be used for transfinite interpolations
- In 2D, inputs to program are 4 boundaries
- Issues: Propagates discontinuities in the interior and grid lines can overlap in some situations - => needs to be refined by grid generator solving a PDE

Grid Generation for Structured Grids: Algebraic Methods: Transfinite Interpolation, Cont'd

- Examples:

Fig. 9.12. (a) C-grid around ellipse: Unidirectional Lagrange Interpolation, (b) C-grid around ellipse: Unidirectional Hermite Interpolation, (c) C-grid around ellipse: Unidirectional Lagrange Interpolation with Hyperbolic Tangent Spacing, (d) C-grid around ellipse: Unidirectional Hermite Interpolation with Hyperbolic Tangent Spacing.
© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

MIT OpenCourseWare
http://ocw.mit.edu

2.29 Numerical Fluid Mechanics

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

