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2.29 Numerical Fluid Mechanics

Spring 2015 – Lecture 21

REVIEW Lecture 20: Time-Marching Methods and ODEs–IVPs
• Time-Marching Methods and ODEs – Initial Value Problems

– Euler’s method

– Taylor Series Methods
• Error analysis: for two time-levels, if truncation error is of O(hn), the global error is of O(hn-1)

– Simple 2nd order methods 
• Heun’s Predictor-Corrector and Midpoint Method (belong to Runge-Kutta’s methods)

• To achieve higher accuracy in time: utilize information (known values of the 
derivative in time, i.e. the RHS f ) at more points in time, equate to Taylor series
– Runge-Kutta Methods 

• Additional points are between tn and tn+1

– Multistep/Multipoint Methods: Adams Methods
• Additional points are at past time steps 

– Practical CFD Methods
– Implicit Nonlinear systems
– Deferred-correction Approach
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TODAY (Lecture 21):  

End of Time-Marching Methods, Grid Generation

• Time-Marching Methods and ODEs – IVPs: End
– Multistep/Multipoint Methods
– Implementation of Implicit Time-Marching: Nonlinear systems
– Deferred-correction Approach

• Complex Geometries
– Different types of grids
– Choice of variable arrangements: Cartesian or grid-oriented velocity, staggered or collocated var.

• Grid Generation
– Basic concepts and structured grids

• Stretched grids
• Algebraic methods (for stretched grids)
• General coordinate transformation
• Differential equation methods
• Conformal mapping methods

– Unstructured grid generation
• Delaunay Triangulation
• Advancing Front method
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References and Reading Assignments

Time-Marching

• Chapters 25 and 26 of “Chapra and Canale, Numerical
Methods for Engineers, 2014/2010/2006.”

• Chapter 6 on “Methods for Unsteady Problems” of “J. H.
Ferziger and M. Peric, Computational Methods for Fluid
Dynamics. Springer, NY, 3rd edition, 2002”

• Chapter 6 on “Time-Marching Methods for ODE’s” of “H.
Lomax, T. H. Pulliam, D.W. Zingg, Fundamentals of
Computational Fluid Dynamics (Scientific Computation).
Springer, 2003”
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Multistep/Multipoint Methods

• Additional points are at time steps at which data has already

been computed

• Adams Methods: fitting a (Lagrange) polynomial to the

derivatives at a number of points in time

– Explicit in time (up to tn): Adams-Bashforth methods

– Implicit in time (up to tn+1): Adams-Moulton methods

– Coefficients  βk’s can be estimated by Taylor Tables:

• Fit Taylor series so as to cancel as high-order terms as possible
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Example: Taylor Table for the 

Adams-Moulton 3-steps (4 time-nodes) Method

1
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Taylor Table (at tn):

• The first row (Taylor
series) + next 5 rows
(Taylor series for each
term) must sum to zero

• This can be satisfied
up to the 5th column
(cancels 4th order term)

• Hence, the AM method
with 4-time levels is 4th

order accurate

1 0 1 2solving for the ' 9 / 24, 19 / 24, 5/ 24   and 1/ 24k s          
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Examples of Adams Methods for 

Time-Integration

(Adams-Bashforth, with ABn meaning nth order AB)

(Adams-Moulton, with AMn meaning nth order AM)
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Practical 

Multistep Time-Integration Methods for CFD
• High-resolution CFD requires large discrete state vector sizes to store the spatial

information

• As a result, up to two times (one on each side of the current time step) have often

been utilized (3 time-nodes):

• Rewriting this equation in a way such that differences w.r.t. Euler’s method are

easily seen, one obtains (θ = 0 for explicit schemes):
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• Note that higher

order R-K methods in

time are now also

used, especially low

storage R-K.

Numerical Fluid Mechanics
© source unknown. All rights reserved. This content is
excluded from our CreativeCommons license. For more
information, see http://ocw.mit.edu/fairuse.
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Implementation of Implicit Time-Marching Methods:

Nonlinear Systems and Larger dimensions

• Consider the nonlinear system (discrete in space):

• For an explicit method in time, solution is straightforward

– For explicit Euler:

– More general, e.g. AB:

• For an implicit method

– For Implicit Euler:

– More general: 

=> a nontrivial scheme is needed to obtain
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Implementation of Implicit Time-Marching Methods:

Larger dimensions and Nonlinear systems 

• Two main options for an implicit method, either:

1. Linearize the RHS at t :n

• Taylor Series:

where 

• Hence, the linearized system (for the frequent case of system not explicitly

function of t):

2. Use an iteration scheme at each time step, e.g. fixed point iteration (direct),

Newton-Raphson or secant method

• Newton-Raphson:

• Iteration often rapidly convergent since initial guess to start iteration at t closen
to unknown solution at tn+1
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Deferred-Correction Approaches

• Size of computational molecule affects both storage

requirements and effort needed to solve the algebraic system

at each time-step

– Usually, we wish to keep only the nearest neighbors of the center

node P in the LHS of equations (leads to tri-diagonal matrix or

something close to it) ⇒ easier to solve linear/nonlinear system

– But, approximations that produce such molecules are often not

accurate enough

• Way around this issue?

– Leave only the terms containing the nearest neighbors in the LHS and

bring all other more-remote terms to the RHS

• This requires that these terms be evaluated with previous or old values,

which may lead to divergence of the iterative scheme

• Better approach?
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Deferred-Correction Approaches, Cont’d

• Better Approach

– Compute the terms that are approximated with a high-order approximation

explicitly and put them in the RHS

– Take a simpler approximation to these terms (that give a small

computational molecule). Insert it twice in the equation, with a + and - sign

– One of these two simpler approximations, keep it in the LHS of the

equations (with unknown variables values, i.e. implicit/new). Move the

other to the RHS (i.e. computing it explicitly using existing/old values)

– The RHS now contains the difference between two explicit approximations

of the same term, and is likely to be small 

• Likely no convergence problems to an iteration scheme (Jacobi, GS, SOR, etc)

or gradient descent (CG, etc)

– Once the iteration converges, the low order approximation terms (one

explicit, the other implicit) drop out and the solution corresponds to the

higher-order approximation

•  Using H & L for high & low orders:
oldH L H L      A x b A x b A x A x
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Deferred-Correction Approaches, Cont’d

• This approach can be very powerful and general

– Used when treating higher-order approximations, non-orthogonal

grids, corrections needed to avoid oscillation effects, etc

– Since RHS can be viewed as a correction  called deferred-

correction

– Note: both L&H terms could be implicit in time: use L&H explicit

starter to get first values and then most recent old values in bracket

during iterations (similar to Jacobi vs. Gauss Seidel)

• Explicit for H (high-order) term, implicit for L (low-order) term

• Implicit for both L and H terms  (similar to Gauss-Seidel)

old

implicit explicit implicit
H L H L      A x b A x b A x A x

old

implicit implicit implicit
H L H L      A x b A x b A x A x
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Deferred-Correction Approaches, Cont’d

• Example 1: FD methods with High-order Pade’ schemes

– One can use the PDE itself to express implicit Pade’ time derivative   

as a function of  n+1 (see homework)

– Or, use deferred-correction (within an iteration scheme of index r):
• In time:

• In space:

• The complete 2nd order CDS would be used on the LHS. The RHS would be

the bracket term: the difference between the Pade’ scheme and the “old” CDS.

When the CDS becomes as accurate as Pade’, this term in the bracket is zero

• Note: Forward/Backward DS could have been used instead of CDS, e.g. in

time,
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Deferred-Correction Approaches, Cont’d

• Example 2 with FV methods: Higher-order Flux approximations

– Higher-order flux approximations are computed with “old values” and a

lower order approximation is used with “new values” (implicitly) in the

linear system solver:

where Fe is the flux. For ex., the low order approximation is a UDS or CDS 

• Convergence and stability properties are close to those of the low order implicit

term since the bracket is often small compared to this implicit term

• In addition, since bracket term is small, the iteration in the algebraic equation

solver can converge to the accuracy of higher-order scheme

• Additional numerical effort is explicit with “old values” and thus much smaller

than the full implicit treatment of the higher-order terms

– A factor can be used to produce a mixture of pure low and pure high order.

This can be used to remove undesired properties, e.g. oscillations of high-

order schemes

oldL H L
e e e eF F F F    

old
(1 )L H L

e e e eF F F F       



PFJL  Lecture 21,    15Numerical Fluid Mechanics2.29

References and Reading Assignments

Complex Geometries and Grid Generation

• Chapter 8 on “Complex Geometries” of “J. H. Ferziger and M.
Peric, Computational Methods for Fluid Dynamics. Springer,
NY, 3rd edition, 2002”

• Chapter 9 on “Grid Generation” of T. Cebeci, J. P. Shao, F.
Kafyeke and E. Laurendeau, Computational Fluid Dynamics for
Engineers. Springer, 2005.

• Chapter 13 on “Grid Generation” of Fletcher, Computational
Techniques for Fluid Dynamics. Springer, 2003.

• Ref on Grid Generation only:

– Thompson, J.F., Warsi Z.U.A. and C.W. Mastin, “Numerical Grid
Generation, Foundations and Applications”, North Holland, 1985
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Grid Generation and Complex Geometries: 

Introduction
• Many flows in engineering and science involve complex geometries

• This requires some modifications of the algorithms:

– Ultimately, properties of the numerical solver also depend on the:

• Choice of the grid

• Vector/tensor components (e.g. Cartesian or not)

• Arrangement of the variables on the grid

• Different types of grids:

– Structured grids: families of grid lines such that members of the same family do

not cross each other and cross each member of other families only once

– Advantages: simpler to program, neighbor connectivity, resultant algebraic

system has a regular structure => efficient solvers

– Disadvantages: can be used only for simple geometries, difficult to control the

distribution of grid points on the domain (e.g. concentrate in specific areas)

– Three types (names derived from the shape of the grid):

• H-grid: a grid which can map into a rectangle

• O-grid: one of the coordinate lines wraps around or is “endless”. One introduces an
artificial cut at which the grid numbering jumps

• C-grid: points on portions of one grid line coincide (used for body with sharp edges)
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Grid Generation and 

Complex Geometries:

Structured Grids

• Example: create a grid for the flow
over a heat exchanger tube bank
(only part of it is shown)

• Stepwise 2D Cartesian grid

– Number of points non constant or
use masks

– Steps at boundary introduce errors

• vs. non-orthogonal, structured grid

H-Type grids

© Prentice Hall. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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Grid Generation and 

Complex Geometries:

Block-Structured Grids

• Grids for which there is one or
more level subdivisions of the
solution domain

– Can match at interfaces or not

– Can overlap or not

• Block structured grids with
overlapping blocks are sometimes
called “composite” or “Chimera”
grids

– Interpolation used from one grid to
the other

– Useful for moving bodies (one
block attached to it and the other is
a stagnant grid)

• Special case: Embedded or Nested
grids, which can still use different
dynamics at different scales

Grid with 3 Blocks, with an O-Type grid 
(for coordinates around the cylinder)

Grid with 5 blocks, including H-Type and C-Type, 
and non-matching interface:

“composite” or “Chimera” Grid

Grids © Springer. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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Grid Generation and 

Complex Geometries:

Other examples of

Block-structured Grids

© Prentice Hall. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

© Andreas C. Haselbacher. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 
Figure 1.7 in Haselbacher, Andreas C. "A grid-transparent numerical method for 
compressible viscous flows on mixed unstructured grids." PhD diss., Loughborough
University, 1999.

http://ocw.mit.edu/fairuse
https://dspace.lboro.ac.uk/2134/7257
https://dspace.lboro.ac.uk/2134/7257
http://ocw.mit.edu/help/faq-fair-use/
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Grid Generation and Complex Geometries:

Unstructured Grids

• For very complex geometries, most flexible grid is one

that can fit any physical domain: i.e. unstructured

• Can be used with any discretization scheme, but best

adapted to FV and FE methods

• Grid most often made of:

– Triangles or quadrilaterals in 2D

– Tetrahedra or hexahedra in 3D

• Advantages

– Unstructured grid can be made orthogonal if needed

– Aspect ratio easily controlled

– Grid may be easily refined

• Disadvantages:

– Irregularity of the data structure: nodes locations and

neighbor connections need to be specified explicitly

– The matrix to be solved is not regular anymore and the size

of the band needs to be controlled by node ordering

© Andreas C. Haselbacher. All rights reserved. This content
is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.
Figure 1.7 in Haselbacher, Andreas C. "A grid-transparent
numerical method for compressible viscous flows on mixed
unstructured grids." PhD diss., Loughborough University,
1999.

https://dspace.lboro.ac.uk/2134/7257
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https://dspace.lboro.ac.uk/2134/7257
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Unstructured Grids Examples: 

Multi-element grids
• For FV methods, what matters is

the angle between the vector
normal to the cell surface and the
line connecting the CV centers 

– 2D equilateral triangles are
equivalent to a 2D orthogonal grid

• Cell topology is important:

– If cell faces parallel, remember that
certain terms in Taylor expansion
can cancel  higher accuracy

– They nearly cancel if topology close
to parallel

• Ratio of cells’ sizes should be
smooth

• Generation of triangles or
tetrahedra is easier and can be
automated, but lower accuracy

• Hence, more regular grid (prisms,
quadrilaterals or hexahedra) often
used near boundary where solution often vary rapidly

© Springer. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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Complex Geometries: 

The choice of velocity (vector) components

• Cartesian (used in this course)

– With FD, one only needs to employ modified equations to take into

account of non-orthogonal coordinates (change of derivatives due to

change of spatial coordinates from Cartesian to non-orthogonal)

– In FV methods, normally, no need for coordinate transformations in the

PDEs: a local coordinate transformation can be used for the gradients

normal to the cell faces

• Grid-oriented:

– Non-conservative source terms appear in the equations (they account

for the re-distribution of momentum between the components)

– For example, in polar-cylindrical coordinates, in the momentum

equations:

• Apparent centrifugal force and apparent Coriolis force
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Complex Geometries: 

The choice of variable arrangement

• Staggered arrangements

– Improves coupling u ↔ p

– For Cartesian components

when grid lines change by

90 degrees, the velocity

component stored at the

cell face makes no

contribution to the mass

flux through that face

– Difficult to use Cartesian

components in these cases

– Hence, for non-orthogonal grids, grid-oriented velocity components often used

• Collocated arrangements (mostly used here)
– The simplest one: all variables share the same CV
– Requires more interpolation

Variable arrangements on a non-orthogonal grid. Illustrated are a staggered 
arrangement with (i) contravarient velocity components and (ii) Cartesian velocity 
components, and (iii) a colocated arrangement with Cartesian velocity 
components. 

Velocities

(I) (II) (III)

Pressure

Image by MIT OpenCourseWare.
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Classes of Grid Generation

• An arrangement of discrete set of grid points or cells needs to be generated

for the numerical solution of PDEs (fluid conservation equations)

– Finite volume methods:

• Can be applied to uniform and non-uniform grids

– Finite difference methods:

• Require a coordinate transformation to map the irregular grid in the physical spatial

domain to a regular one in the computational domain

• Difficult to do this in complex 3D spatial geometries

• So far, only used with structured grid (could be used with unstructured grids with

polynomials  defining the shape of  around a grid point)

• Three major classes of (structured) grid generation: i) algebraic methods, ii)

differential equation methods and iii) conformal mapping methods

• Grid generation and solving PDE can be independent

– A numerical (flow) solver can in principle be developed independently of the grid

– A grid generator then gives the metrics (weights) and the one-to-one

correspondence between the spatial-grid and computational-grid
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Grid Generation: 

Basic Concepts for Structured Grids

• Structured Grids (includes curvilinear or non-orthogonal grids)

– Often utilized with FD schemes

– Methods based on coordinate transformations

• Consider irregular shaped physical domain (x, y) in Cartesian coordinates

and determine its mapping to the computational domain in the (ξ, η)

Cartesian coordinates

– Mapped (computational) region has a rectangular shape:

• Coordinates (ξ, η) can vary from 1 to (I, J), with mesh sizes taken equal to 1

– Boundaries are mapped to boundaries

– Increase ξ or η monotonically in
physical domain along “curved lines”

– Coordinate lines of the same family
do not cross

– Lines of different family don’t cross
more than once

– Physical grid refined where large
errors are expected

A simply-connected irregular shape in the physical plane is mapped 
as a rectangle in the computational plane.  

A B

CD

1 2 3

η

ξ0

A
B

CD

(I,1) (I,1)

(I,J)(1,J)
(I,J)(1,J)

(1,1) (1,1)

x

y

Image by MIT OpenCourseWare.
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Grid Generation: 

Basic Concepts for Structured Grids, Cont’d

• The example just shown was the mapping of an irregular,

simply connected, region into a rectangle.

• Other configurations are of course possible

– For example, a L-shape domain
can be mapped into:

– a regular L-shape

– or into a rectangular shape

x

y

x

y

0 1 2 3 4 5

1

2

3

η

ξ

AA BB

CC D
D

E
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F

F

0 1 2 3 4 5

1

2
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η

ξ
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C
C

D
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E
E

F
F

ξ monotonically
increasing from
F to A to B
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Grid Generation for Structured Grids:

Stretched Grids

• Consider a viscous flow solution on a given body, where the velocity varies

rapidly near the surface of the body (Boundary Layer)

• For efficient computation, a finer grid near the body and coarser grid away

from the body is effective (aims to maintain constant accuracy)

• Possible coordinate transformation: a scaling “η = log (y)” ↔ “y = exp(η)”

The parameter β (1 < β < ∞) is the 
stretching parameter. As β gets close to 1, 
more grid points are clustered to the wall 
in the physical domain.

• Inverse transformation is needed to
map solutions back from ξ, η domain:
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tretched Grids, Cont’d

• How do the conservation equations change?

• Consider the continuity equation for steady state flow in physical (x, y) space:

• In the computational plane, this equation becomes (chain rule)

• For our stretching transformation, one obtains:

• Therefore, the continuity equation becomes:

– This equation can be solved on a uniform grid (slightly more complicated eqn.

system), and the solution mapped back to the physical domain using the inverse

transform
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Grid Generation for Structured Grids:

Algebraic Methods: Transfinite Interpolation

• Multi-directional interpolation (Transfinite Interpolation)

– To generate algebraic grids within more complex domains or around more

complex configurations, multi-directional interpolations can be used

• They consist of a suite of unidirectional interpolations

• Unidirectional Interpolations (1D curve)

– The Cartesian coordinate vector of any point on a curve r(x,y) is obtained

as an interpolation between given points that lie on the boundary curves

– How to interpolate?   the regulars:

• Lagrange Polynomials: match function values

• Hermite Polynomials:  match both function and 1st derivative values
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Grid Generation for Structured Grids:

Algebraic Methods: Transfinite Interpolation, Cont’d

• Unidirectional Interpolations (1D curve), Cont’d

– Lagrange and Hermite Polynomials fit a single polynomial from one

boundary to the next => for long boundaries, oscillations may occur

– Alternative 1: use set of lower order polynomials to form a piece-wise

continuous interpolation:

• Spline interpolation (match as many derivatives as possible at interior point

junctions), Tension-spline (more localized curvature) and B-splines (allows local

modification of the interpolation)

– Alternative 2: use interpolation functions that are not polynomials, usually

“stretching functions”: exp, tanh, sinh, etc

• Multi-directional or Transfinite Interpolation

– Extends 1D results to 2D or 3D by

successive applications of 1D interpolations

– For example, i then j.

r1

i1=0

r2

i2=I

r1

i1=0

r2

i2=I
j
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Grid Generation for Structured Grids:

Algebraic Methods: Transfinite Interpolation, Cont’d

• Multi-directional or Transfinite Interpolation, Cont’d

– In 2D, the transfinite interpolation can be implemented as follows

• Interpolate position vectors r in i-direction => leads to points f1=i(r) and i-lines

• Evaluate the difference between this result and r on the j-lines that will be used

in the j-interpolation (e.g. 2 differences: one with curve i=0 & one with i=I):  r –f1

• Interpolation of the discrepancy in the j-direction: f2 = j(r –f1)

• Addition of the results of this j-interpolation to the results of the i-interpolation:

r (i, j)= f1 + f2

r1

i1=0

r2

i2=I

r1

i1=0

r2

i2=I
j

• Of course, Lagrange, Hermite Polynomials, Spline and
non-polynomial (stretching) functions can be used for
transfinite interpolations

• In 2D, inputs to program are 4 boundaries
• Issues: Propagates discontinuities in the interior and
grid lines can overlap in some situations

• => needs to be refined by grid generator solving a PDE
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Grid Generation for Structured Grids:

Algebraic Methods: Transfinite Interpolation, Cont’d

• Examples:
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