2.29 Numerical Fluid Mechanics Spring 2015 - Lecture 16

REVIEW Lecture 15:

- Finite Volume Methods
- Integral and conservative forms of the cons. laws
- Introduction
- Approximations needed and basic elements of a FV scheme
- Grid generation \Rightarrow Time-Marching
- FV grids: Cell centered (Nodes or CV-faces) vs. Cell vertex; Structured vs. Unstructured
- Approximation of surface integrals (leading to symbolic formulas)
- Approximation of volume integrals (leading to symbolic formulas)
- Summary: Steps to step-up a FV scheme
- One Dimensional examples
- Generic equation: $\frac{d\left(\Delta x \bar{\Phi}_{j}\right)}{d t}+f_{j+1 / 2}-f_{j-1 / 2}=\int_{x_{j-1 / 2}}^{x_{x+1 / 2}} s_{\phi}(x, t) d x$
- Linear Convection (Sommerfeld eqn): convective fluxes
- $2^{\text {nd }}$ order in space

TODAY (Lecture 16): FINITE VOLUME METHODS

- Summary: Steps to step-up a FV scheme
- Examples: One Dimensional examples
- Generic equations
- Linear Convection (Sommerfeld eqn): convective fluxes
- $2^{\text {nd }}$ order in space, $4^{\text {th }}$ order in space, links to CDS
- Unsteady Diffusion equation: diffusive fluxes
- Two approaches for $2^{\text {nd }}$ order in space, links to CDS
- Approximation of surface integrals and volume integrals revisited
- Interpolations and differentiations
- Upwind interpolation (UDS)
- Linear Interpolation (CDS)
- Quadratic Upwind interpolation (QUICK)
- Higher order (interpolation) schemes

References and Reading Assignments

- Chapter 29.4 on "The control-volume approach for elliptic equations" of "Chapra and Canale, Numerical Methods for Engineers, 2014/2010/2006."
- Chapter 4 on "Finite Volume Methods" of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, $3^{\text {rd }}$ edition, 2002"
- Chapter 5 on "Finite Volume Methods" of "H. Lomax, T. H. Pulliam, D.W. Zingg, Fundamentals of Computational Fluid Dynamics (Scientific Computation). Springer, 2003"
- Chapter 5.6 on "Finite-Volume Methods" of T. Cebeci, J. P. Shao, F. Kafyeke and E. Laurendeau, Computational Fluid Dynamics for Engineers. Springer, 2005.

One-Dimensional Example I Linear Convection (Sommerfeld) Eqn, Cont'd

- The resultant linear algebraic system is circulant tri-diagonal (for periodic BCs)

$$
\frac{d \overline{\boldsymbol{\Phi}}}{d t}+\frac{c}{2 \Delta x} \mathbf{B}_{P}(-1,0,1) \overline{\mathbf{\Phi}}=0
$$

- This is as the $2^{\text {nd }}$ order CDS!, except that it is written in terms of cell averaged values instead of values at FD nodes/points
- It is also $2^{\text {nd }}$ order in space
- Has same properties as classic CDS for $\frac{\partial \phi(x, t)}{\partial t}+\frac{\partial c \phi(x, t)}{\partial x}=0$
- Non-dissipative (check Fourier analysis or eigenvalues of \mathbf{B}_{P} which are imaginary), but can provide oscillatory errors
- Stability (recall tables for FD schemes, linear convection eqn.) of time-marching
- If centered in time, centered in space, explicit: stable with CFL condition: $\frac{c \Delta t}{\Delta x} \leq 1$
- If implicit in time: unconditionally stable for all $\Delta t, \Delta x$

One-Dimensional Example II Linear Convection (Sommerfeld) Eqn: $4^{\text {th }}$ order approx.

-1D exact integral equation still

$$
\frac{d\left(\Delta x \bar{\Phi}_{j}\right)}{d t}+f_{j+1 / 2}-f_{j-1 / 2}=0
$$

- Use $4^{\text {th }}$ order accurate surface/volume integrals
- Replace piecewise-constant approx. to $\phi(x)$ with piece-wise quadratic $\operatorname{approx}\left(\xi=x-x_{j}\right): \quad \phi(\xi)=a \xi^{2}+b \xi+c \quad$ (note ϕ defined over more than 1 cell)
-Satisfy $\bar{\Phi}_{P}{ }^{\prime} s$ (average) constraints, i.e. choose $\mathrm{a}, \mathrm{b}, \mathrm{c}$ so that:

$$
\frac{1}{\Delta x} \int_{-3 \Delta x / 2}^{-\Delta x / 2} \phi(\xi) d \xi=\bar{\phi}_{j-1}, \quad \frac{1}{\Delta x} \int_{-\Delta x / 2}^{+\Delta x / 2} \phi(\xi) d \xi=\bar{\phi}_{j}, \quad \frac{1}{\Delta x} \int_{\Delta x / 2}^{3 \Delta x / 2} \phi(\xi) d \xi=\bar{\phi}_{j+1}
$$

- This gives:

$$
a=\frac{\bar{\phi}_{j+1}-2 \bar{\phi}_{j}+\bar{\phi}_{j-1}}{2 \Delta x^{2}}, \quad b=\frac{\bar{\phi}_{j+1}-\bar{\phi}_{j-1}}{2 \Delta x}, \quad c=\frac{-\bar{\phi}_{j-1}+26 \bar{\phi}_{j}-\bar{\phi}_{j+1}}{24}
$$

- Next, we need to evaluate the values of $\phi(x)$ at the boundaries so as to compute the advective fluxes at these boundaries: $f_{j-1 / 2}^{L}, f_{j-1 / 2}^{R}, f_{j+1 / 2}^{L}, f_{j+1 / 2}^{R}$

One-Dimensional Example II

 Linear Convection (Sommerfeld) Eqn: $4^{\text {th }}$ order approx.- Since $f=c \phi \Rightarrow$ compute ϕ at edges:

$$
\begin{aligned}
& \phi_{j-1 / 2}^{L}=\frac{2 \bar{\phi}_{j}+5 \bar{\phi}_{j-1}-\bar{\phi}_{j-2}}{6}, \quad \phi_{j+1 / 2}^{L}=\frac{2 \bar{\phi}_{j+1}+5 \bar{\phi}_{j}-\bar{\phi}_{j-1}}{6}, \\
& \phi_{j-1 / 2}^{R}=\frac{-\bar{\phi}_{j+1}+5 \bar{\phi}_{j}+2 \bar{\phi}_{j_{-1}}}{6}, \phi_{j+1 / 2}^{R}=-\frac{-\bar{\phi}_{+12}+5 \bar{\phi}_{+1+1}+2 \bar{\phi}_{j}}{6}
\end{aligned}
$$

Image by MIT OpenCourseWare.

- Resolve flux discontinuity \Rightarrow again, use average values

$$
\begin{array}{ll}
\hat{f}_{j-1 / 2}=\frac{f_{j-1 / 2}^{L}+f_{j-1 / 2}^{R}}{2}=\frac{c \phi_{j-1 / 2}^{L}+c \phi_{j-1 / 2}^{R}}{2} & \hat{f}_{j+1 / 2}=\frac{f_{j+1 / 2}^{L}+f_{j+1 / 2}^{R}}{2}=\frac{c \phi_{j+1 / 2}^{L}+c \phi_{j+1 / 2}^{R}}{2} \\
\Rightarrow \hat{f}_{j-1 / 2}=c \frac{-\bar{\phi}_{j+1}+7 \bar{\phi}_{j}+7 \bar{\phi}_{j-1}-\bar{\phi}_{j-2}}{12} & \Rightarrow \hat{f}_{j+1 / 2}=c \frac{-\bar{\phi}_{j+2}+7 \bar{\phi}_{j+1}+7 \bar{\phi}_{j}-\bar{\phi}_{j-1}}{12}
\end{array}
$$

- Done with "integrals" \Rightarrow we can substitute in 1D conv. eqn:

$$
\frac{d\left(\Delta x \bar{\Phi}_{j}\right)}{d t}+f_{j+1 / 2}-f_{j-1 / 2} \approx \frac{d\left(\Delta x \bar{\phi}_{j}\right)}{d t}+\hat{f}_{j+1 / 2}-\hat{f}_{j-1 / 2} \Rightarrow \Delta x \frac{d \bar{\phi}_{j}}{d t}+c \frac{-\bar{\phi}_{j+2}+8 \bar{\phi}_{j+1}-8 \bar{\phi}_{j-1}+\bar{\phi}_{j-2}}{12}=0
$$

- For periodic domains: $\quad \frac{d \overline{\boldsymbol{\Phi}}}{d t}+\frac{c}{12 \Delta x} \mathbf{B}_{f}(-1,-8,0,8,1) \overline{\boldsymbol{\Phi}}=0$

FIGURE 23.3

Centered finite-divideddifference formulas: two versions are presented for each derivative. The latter version incorporates more terms of the Taylor series expansion and is, consequently, more accurate.

First Derivative
$f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{2 h_{--}}$
$f_{1}^{\prime}\left(x_{i}\right)=\frac{-f\left(\left|x_{i+2}\right|+8 f\left(\left|x_{i+1}\right|-8 f\left(x_{i-1}\right)+f\left(x_{i-2}\right)\right.\right.}{12 h}$
Second Derivative

$$
\begin{align*}
& f^{\prime \prime}\left(x_{i}\right)=\frac{\left.f\left(x_{i}\right)\right)-2 f\left(x_{i}\right)+f\left(x_{i-1}\right)}{h^{2}} \tag{2}\\
& f^{\prime \prime}\left(x_{i}\right)=\frac{-f\left(x_{i+2}\right)+10 f\left(x_{i+1}\right)-30 f\left(x_{i}\right)+10 f\left(x_{i-1}\right)-f\left(x_{i-2}\right)}{12 h^{2}} \tag{4}
\end{align*}
$$

Third Derivative

$$
\begin{align*}
& f^{\prime \prime \prime}\left(x_{i}\right)=\frac{f\left(x_{i+2}\right)-2 f\left(x_{i+1}\right)+2 f\left(x_{i-1}\right)-f\left(x_{i-2}\right)}{2 h^{3}} \tag{2}\\
& f^{\prime \prime \prime}\left(x_{i}\right)=\frac{-f\left(x_{i+3}\right)+8 f\left(x_{i+2}\right)-13 f\left(x_{i+1}\right)+13 f\left(x_{i-1}\right)-8 f\left(x_{i-2}\right)+f\left(x_{i-3}\right)}{8 h^{3}} \tag{4}
\end{align*}
$$

Fourth Derivative

$$
\begin{align*}
& f^{\prime \prime \prime \prime}\left(x_{i}\right)=\frac{f\left(x_{i+2}\right)-4 f\left(x_{i+1}\right)+6 f\left(x_{i}\right)-4 f\left(x_{i-1}\right)+f\left(x_{i-2}\right)}{h^{4}} \\
& f^{\prime \prime \prime \prime}\left(x_{i}\right)=\frac{-f\left(x_{i+3}\right)+12 f\left(x_{i+2}\right)+39 f\left(x_{i+1}\right)+5 f f\left(x_{i}\right)-39 f\left(x_{i-1}\right)+12 f\left(x_{i-2}\right)+f\left(x_{i-3}\right)}{6 h^{4}} \tag{4}
\end{align*}
$$

One-Dimensional Example III $2^{\text {nd }}$ order approx. of diffusion equation: $\frac{\partial \phi(x, t)}{\partial t}=\frac{v^{2} \phi(x, t)}{\partial x^{2}}$

-1D exact integral equation same form!

$$
\frac{d\left(\Delta x \bar{\Phi}_{j}\right)}{d t}+f_{j+1 / 2}-f_{j-1 / 2}=0
$$

but with: $f=-v \nabla \phi=-v \frac{\partial \phi}{\partial x}$

Image by MIT OpenCourseWare.

- Approximation of surface (flux) integral: Approach 1
- Direct: we know that to second-order (from CDS and from $\bar{\phi}_{j}=\phi_{j}+O\left(\Delta x^{2}\right)$)
$f_{j+1 / 2}=-\left.v \frac{\partial \phi}{\partial x}\right|_{j+1 / 2}=-v \frac{\bar{\phi}_{j+1}-\bar{\phi}_{j}}{\Delta x}+O\left(\Delta x^{2}\right) \Rightarrow \hat{f}_{j+1 / 2}=-v \frac{\bar{\phi}_{j+1}-\bar{\phi}_{j}}{\Delta x}$ and $\hat{f}_{j-1 / 2}=-v \frac{\bar{\phi}_{j}-\bar{\phi}_{j-1}}{\Delta x}$
- Substitute into integral equation:

$$
\frac{d\left(\Delta x \bar{\phi}_{j}\right)}{d t}+\hat{f}_{j+1 / 2}-\hat{f}_{j-1 / 2}=\Delta x \frac{d \bar{\phi}_{j}}{d t}+v \frac{\bar{\phi}_{j-1}-2 \bar{\phi}_{j}+\bar{\phi}_{j+1}}{\Delta x}=0
$$

- In the matrix form, with Dirichlet BCs:
- Semi-discrete FV scheme is as CDS in space,

$$
\frac{d \overline{\boldsymbol{\Phi}}}{d t}=\frac{v}{\Delta x^{2}} \mathbf{B}(1,-2,1) \overline{\mathbf{\Phi}}+(\mathbf{b c})
$$ but in terms of cell-averaged data

One-Dimensional Example III $2^{\text {nd }}$ order approx. of diffusion equation: $\frac{\partial \phi(x, t)}{\partial t}=\frac{\partial^{\gamma} \phi(x, t)}{\partial x^{2}}$

- Approximation of surface (flux) integral: Approach 2
- Use a piece-wise quadratic approx.: $\underline{\phi(\xi)=a \xi^{2}+b \xi+c} \Rightarrow \frac{\partial \phi}{\partial x}=\frac{\partial \phi}{\partial \xi}=2 a \xi+b$
- Note that a, b, c remain as before, they are set by the volume average constraints
- Since a, b are "symmetric":

$$
\begin{aligned}
& f_{j+1 / 2}^{R}=f_{j+1 / 2}^{L}=-\left.v \frac{\partial \phi}{\partial x}\right|_{j+1 / 2}=-v \frac{\bar{\phi}_{j+1}-\bar{\phi}_{j}}{\Delta x}+O\left(\Delta x^{2}\right) \\
& f_{j-1 / 2}^{R}=f_{j-1 / 2}^{L}=-\left.v \frac{\partial \phi}{\partial x}\right|_{j-1 / 2}=-v \frac{\bar{\phi}_{j}-\bar{\phi}_{j-1}}{\Delta x}+O\left(\Delta x^{2}\right)
\end{aligned}
$$

- There are no flux discontinuities in this case
-Substitute into integral equation:

$$
\frac{d\left(\Delta x \bar{\phi}_{j}\right)}{d t}+\hat{f}_{j+1 / 2}-\hat{f}_{j-1 / 2}=\Delta x \frac{d \bar{\phi}_{j}}{d t}+v \frac{\bar{\phi}_{j-1}-2 \bar{\phi}_{j}+\bar{\phi}_{j+1}}{\Delta x}=0
$$

- In the matrix form, with Dirichlet BCs:
- Semi-discrete FV scheme is as CDS in space,

$$
\frac{d \overline{\boldsymbol{\Phi}}}{d t}=\frac{v}{\Delta x^{2}} \mathbf{B}(1,-2,1) \overline{\boldsymbol{\Phi}}+(\mathbf{b c})
$$ but in terms of cell-averaged data

- Set-up of surface/volume integrals: 2 approaches (do things in opposite order)

1. (i) Evaluate integrals using classic rules (symbolic evaluation); (ii) Then, to obtain the unknown symbolic values, interpolate based on cell-averaged (nodal) values

$$
\left.\begin{array}{l}
\text { (i) } F_{e}=\int_{s_{e}} f_{\phi} d A \Rightarrow F_{e}=\mathcal{G}\left(\phi_{e}\right. \\
\text { (ii) } \phi_{e}=\mathcal{H}\left(\bar{\phi}_{P} ' s\right) \equiv \mathcal{H}\left(\phi_{P}^{\prime} s\right)
\end{array}\right\} \Rightarrow F_{e}=\mathcal{F}\left(\bar{\phi}_{P}^{\prime} ' s\right)
$$

Similar for other integrals:

$$
\left(S_{\phi}=\int_{V} s_{\phi} d V, \bar{\Phi}=\frac{1}{V} \int_{V} \rho \phi d V, e t c\right)
$$

2. (i) Select shape of solution within CV (piecewise approximation); (ii) impose volume constraints to express coefficients in terms of nodal values; and (iii) then integrate. (this approach was used in the examples).

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
\text { (i) } \phi_{a_{i}}(x) \equiv \mathcal{J}_{a_{i}}(x) \\
\text { (ii) } \int_{V_{P}} \phi_{a_{i}}(x) \equiv \bar{\phi}_{P} \\
\text { (iii) } F_{e}=\int_{S_{e}} f_{\phi_{\bar{\phi} P}} d A
\end{array}\right\} \Rightarrow \phi_{a_{i}}(x) \equiv \phi_{\bar{\phi}_{P}}(x) \\
\hline
\end{array}\right\} \Rightarrow F_{e}=\mathcal{F}\left(\bar{\phi}_{P}^{\prime} s\right) \left\lvert\, \begin{gathered}
\\
\text { Similar for higher dimensions: } \\
\phi(x, y) \equiv \mathcal{J}_{a_{i}}(x, y) ; \text { etc } \\
\phi_{a_{i}}\left(x_{P}, y_{P}\right) \equiv \phi_{P} ; \text { etc }
\end{gathered}\right.
$$

- Boundary conditions:
- Directly imposed for convective fluxes
- One-sided differences for diffusive fluxes

Approach 1: Evaluate integrals symbolically, then interpolate based on neighboring cell-averages

- Surface/Volume integrals: Approach 1
(i) Evaluate integrals based on classic rules (symbolic evaluation)
(ii) Then, to obtain the unknown symbolic values, interpolate based on neighboring cell-averaged (nodal) values
- If we utilize this approach 1
- Symbolic evaluation:
- To evaluate total surface fluxes (convective + diffusive),

$$
\int_{S} \vec{F}_{\phi \cdot \vec{n}} d A=\int_{S} \underline{\rho \phi(\vec{v} \cdot \vec{n})} d A+\int_{S} \underline{\vec{q}_{\phi} \cdot \vec{n}} d A
$$

values of ϕ and its gradient normal to the cell face at one or more locations on that face are needed. They have to be expressed as a function of nodal values $\bar{\phi}$

- Similar for volume integrals
- Next is interpolation:
- Express the ϕ 's as a function of nodal values. Numerous possibilities. We already saw some of the most common, provided again next.

Approx. of Surface/Volume Integrals: Classic symbolic formulas

- Surface Integrals $F_{e}=\int_{S_{e}} f_{\phi} d A$
-2D problems (1D surface integrals)
(summary from Lecture 15)

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.

- Midpoint rule (2 $2^{\text {nd }}$ order): $\quad F_{e}=\int_{S_{e}} f_{\phi} d A=\bar{f}_{e} S_{e}=f_{e} S_{e}+O\left(\Delta y^{2}\right) \approx f_{e} S_{e}$
- Trapezoid rule (2 ${ }^{\text {nd }}$ order): $\quad F_{e}=\int_{S_{e}} f_{\phi} d A \approx S_{e} \frac{\left(f_{n e}+f_{s e}\right)}{2}+O\left(\Delta y^{2}\right)$
- Simpson's rule ($4^{\text {th }}$ order): $F_{e}=\int_{S_{e}} f_{\phi} d A \approx S_{e} \frac{\left(f_{n e}+4 f_{e}+f_{s e}\right)}{6}+O\left(\Delta y^{4}\right)$
-3D problems (2D surface integrals)
- Midpoint rule (2 $2^{\text {nd }}$ order): $\quad F_{e}=\int_{S_{e}} f_{\phi} d A \approx S_{e} f_{e} \quad+O\left(\Delta y^{2}, \Delta z^{2}\right)$
- Higher order more complicated to implement in 3D
- Volume Integrals: $S_{\phi}=\int_{v} s_{\phi} d V, \bar{\Phi}=\frac{1}{V} \int_{\nu} \rho \phi d V$
-2D/3D problems, Midpoint rule (2 ${ }^{\text {nd }}$ order): $S_{P}=\int_{V} s_{\phi} d V=\bar{s}_{P} V \approx s_{P} V$
-2D, bi-quadratic (4 $4^{\text {th }}$ order, Cartesian): $S_{p}=\frac{\Delta x \Delta y}{36}\left[16 s_{p}+4 s_{s}+4 s_{n}+4 s_{w}+4 s_{e}+s_{s e}+s_{s w}+s_{n e}+s_{m m}\right]$

Interpolations and Differentiations

(to obtain fluxes " F_{e} " as a function of cell-average values)

- Upwind Interpolation (UDS) for convective fluxes
- Approximates ϕ_{e} by its value at the node upstream of "e". This is equivalent to using backward or forwarddifference approx for a first derivative (depends on direction of flow) => Upwind Differencing Scheme, which is also called Donor-cell.

$$
\phi_{e}=\left\{\begin{array}{l}
\phi_{P} \text { if }(\vec{v} \cdot \vec{n})_{e}>0 \\
\phi_{E} \text { if }(\vec{v} \cdot \vec{n})_{e}<0
\end{array}\right.
$$

Notation used for a Cartesian 2D and 3D grid.

- This approximation never yields oscillatory solutions (boundedness criterion), but it is numerically diffusive:
- Taylor expansion about $x_{\mathrm{P}}: \quad \phi_{e}=\phi_{P}+\left.\left(x_{e}-x_{P}\right) \frac{\partial \phi}{\partial x}\right|_{P}+\left.\frac{\left(x_{e}-x_{P}\right)^{2}}{2} \frac{\partial^{2} \phi}{\partial x^{2}}\right|_{P}+R_{2}$
- UDS retains only first term: $1^{\text {st }}$ order scheme in space

$$
f_{e}=\rho \phi_{e}(\vec{v} \cdot \vec{n})_{e} \approx \hat{f}_{e}=\rho \phi_{P}(\vec{v} \cdot \vec{n})_{e} \quad \Rightarrow \quad \tau_{\Delta x}=\left.\rho(\vec{v} \cdot \vec{n})_{e} \Delta x \frac{\partial \phi}{\partial x}\right|_{P}+\ldots
$$

- Leading truncation error is "diffusive", it has the form of a diffusive flux
- The numerical diffusion is $\rho(\vec{v} \cdot \vec{n})_{e} \Delta x$ (has 2 components when flow is oblique to the grid)

Interpolations and Differentiations

(to obtain fluxes " F_{e} " as a function of cell-average values)

- Linear Interpolation (CDS) for convective fluxes
- Approximates ϕ_{e} (value at face center) by its linear interpolation between two nearest nodes:

$$
\phi_{e}=\phi_{E} \lambda_{e}+\phi_{P}\left(1-\lambda_{e}\right) \quad \text { where } \lambda_{e}=\frac{x_{e}-x_{P}}{x_{E}-x_{P}}
$$

- λ_{e} is the interpolation factor

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.

- This approx. is $2^{\text {nd }}$ order accurate (for convective fluxes):
- Use Taylor exp. of ϕ_{E} about x_{P} to eliminate $1^{\text {st }}$ derivative in Taylor exp. of ϕ_{e} (previous slide)

$$
\begin{aligned}
& \phi_{E}=\phi_{P}+\left.\left(x_{E}-x_{P}\right) \frac{\partial \phi}{\partial x}\right|_{P}+\left.\frac{\left(x_{E}-x_{P}\right)^{2}}{2} \frac{\partial^{2} \phi}{\partial x^{2}}\right|_{P}+\left.R_{2} \Rightarrow \frac{\partial \phi}{\partial x}\right|_{P}=\frac{\phi_{E}-\phi_{P}}{x_{E}-x_{P}}-\left.\frac{\left(x_{E}-x_{P}\right)}{2} \frac{\partial^{2} \phi}{\partial x^{2}}\right|_{P}-\frac{R_{2}}{x_{E}-x_{P}} \\
& \Rightarrow \phi_{e}=\phi_{P}+\left.\left(x_{e}-x_{P}\right) \frac{\partial \phi}{\partial x}\right|_{P} ^{\leftarrow-\left.\frac{\left(x_{e}-x_{P}\right)^{2}}{2} \frac{\partial^{2} \phi}{\partial x^{2}}\right|_{P}+R_{2}=\phi_{E} \lambda_{e}+\phi_{P}\left(1-\lambda_{e}\right)-\left.\frac{\left(x_{e}-x_{P}\right)\left(x_{E}-x_{e}\right)}{2} \frac{\partial^{2} \phi}{\partial x^{2}}\right|_{P}+R_{2}^{\prime}}
\end{aligned}
$$

- Truncation error is proportional to square of grid spacing, on uniform/non-uniform grids.
- As all approximations of order higher than one, this scheme can provide oscillatory solutions
- Corresponds to central differences, hence its CDS name (gives avg. if uniform grid spacing)

Interpolations and Differentiations

(to obtain fluxes " F_{e} " as a function of cell-average values)

- Linear Interpolation (CDS) for diffusive fluxes
- Linear profile between two nearest nodes leads to simplest approx. of gradient (diffusive fluxes)

$$
\begin{gathered}
\phi=\phi_{E} \lambda+\phi_{P}(1-\lambda) \Rightarrow \\
\lambda=\frac{x-x_{P}}{x_{E}-x_{P}}
\end{gathered}
$$

$$
\left.\frac{\partial \phi}{\partial x}\right|_{e} \approx \frac{\phi_{E}-\phi_{P}}{x_{E}-x_{P}}
$$

- Taylor expansions of ϕ 's around x_{e}, one obtains:

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.
Image by MIT OpenCourseWare.

$$
\tau_{\Delta x}=\left.\frac{\left(x_{e}-x_{P}\right)^{2}-\left(x_{E}-x_{e}\right)^{2}}{2\left(x_{E}-x_{P}\right)} \frac{\partial^{2} \phi}{\partial x^{2}}\right|_{e}-\left.\frac{\left(x_{e}-x_{P}\right)^{3}+\left(x_{E}-x_{e}\right)^{3}}{6\left(x_{E}-x_{P}\right)} \frac{\partial^{3} \phi}{\partial x^{3}}\right|_{e}+R_{3}
$$

- Approximation is $2^{\text {nd }}$ order accurate if e is midway between P and E (e.g. uniform grid)
- When the grid is non-uniform, the formal accuracy is $1^{\text {st }}$ order, but error reduction when grid is refined is asymptotically $2^{\text {nd }}$ order

Interpolations and Differentiations (to obtain fluxes " F_{e} " as a function of cell-average values)

- Quadratic Upwind Interpolation (QUICK), convective fluxes
- Approx. by quadratic profile between two nearest nodes.
- In accord with convection, third point chosen on upstream side:
- i.e. chose W if flow is from P to E, or $E E$ if flow from E to P.

This gives:

$$
\phi_{e}=\phi_{U}+g_{1}\left(\phi_{D}-\phi_{U}\right)+g_{2}\left(\phi_{U}-\phi_{U U}\right)
$$

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.
where D, U and UU denote the downstream, first upstream and second upstream, respectively

- Coefficients in terms of nodal coordinates: $g_{1}=\frac{\left(x_{e}-x_{U}\right)\left(x_{e}-x_{U U}\right)}{\left(x_{D}-x_{U}\right)\left(x_{D}-x_{U U}\right)} \quad ; \quad g_{2}=\frac{\left(x_{e}-x_{U}\right)\left(x_{D}-x_{e}\right)}{\left(x_{U}-x_{U U}\right)\left(x_{D}-x_{U U}\right)}$
- Uniform grids: coefficients of ϕ 's are $3 / 8$ for node D, $6 / 8$ for node U and $-1 / 8$ for node UU
- Somewhat more complex scheme than CDS (larger computational molecules by one node in each direction)
- Approximation is $3^{\text {nd }}$ order accurate on both uniform and non-uniform grids. For uniform grids:

$$
\phi_{e}=\frac{6}{8} \phi_{U}+\frac{3}{8} \phi_{D}-\frac{1}{8} \phi_{U U}-\left.\frac{3 \Delta x^{3}}{48} \frac{\partial^{3} \phi}{\partial x^{3}}\right|_{U}+R_{3}
$$

- But, when this interpolation scheme is used with midpoint rule for surface integral, becomes $2^{\text {nd }}$ order

Interpolations and Differentiations

(to obtain fluxes " $F_{\mathrm{e}}=f\left(\phi_{\mathrm{e}}\right)$ " as a function of cell-average values)

- Higher Order Schemes (for convective/diffusive fluxes)
- Interpolations of order higher than 3 make sense if integrals are also approximated with higher order formulas
- In 1D problems, if Simpson's rule (4 $4^{\text {th }}$ order error) is used for the integral, a polynomial interpolation of order 3 can be used:

$$
\phi(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
$$

(Note: higher-order, approach $1 \rightarrow \approx$ approach $2!$)
=> 4 unknowns, hence 4 nodal values (W, P, E and EE) needed

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.
$=$ Symmetric formula for ϕ_{e} : no need for "upwind" as with $0^{\text {th }}$ or $2^{\text {nd }}$ order polynomials (donor-cell \& QUICK)

- With $\phi(x)$, one can insert $\phi_{e}=\phi\left(x_{e}\right)$ in symbolic integral formula. For a uniform Cartesian grid:
- Convective Fluxes: $\phi_{e}=\frac{27 \phi_{P}+27 \phi_{E}-3 \phi_{W}-3 \phi_{E E}}{48}$
(similar formulas used for ϕ values at corners)
- For Diffusive Fluxes (1 ${ }^{\text {st }}$ derivative):

$$
\left.\frac{\partial \phi}{\partial x}\right|_{e}=a_{1}+2 a_{2} x+3 a_{3} x^{2} \Rightarrow \text { for a uniform Cartesian grid: }\left.\frac{\partial \phi}{\partial x}\right|_{e}=\frac{27 \phi_{E}-27 \phi_{P}+\phi_{W}-\phi_{E E}}{24 \Delta x}
$$

- This FV approximation often called a $4^{\text {th }}$-order CDS (linear poly. interpol. was $2^{\text {nd }}$-order CDS)
- Polynomials of higher-degree or of multi-dimensions can be used, as well as cubic splines (to ensure continuity of first two derivatives at the boundaries). This increases the cost.

Interpolations and Differentiations

(to obtain fluxes " $F_{\mathrm{e}}=f\left(\phi_{\mathrm{e}}\right)$ " as a function of cell-average values)

- Compact Higher Order Schemes
- Polynomial of higher order lead too large computational molecules => use deferred-correction schemes and/or compact (Pade') schemes
- Ex. 1: obtain the coefficients of $\phi(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ by fitting two values and two $1^{\text {st }}$ derivatives at the two nodes on either side of the cell face. With evaluation at x_{e} :
- $4^{\text {th }}$ order scheme: $\phi_{e}=\frac{\phi_{P}+\phi_{E}}{2}+\frac{\Delta x}{8}\left(\left.\frac{\partial \phi}{\partial x}\right|_{P}-\left.\frac{\partial \phi}{\partial x}\right|_{E}\right)+O\left(\Delta x^{4}\right)$

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.

- If we use CDS to approximate derivatives, result retains $4^{\text {th }}$ order:

$$
\phi_{e}=\frac{\phi_{P}+\phi_{E}}{2}+\frac{\phi_{P}+\phi_{E}-\phi_{W}-\phi_{E E}}{16}+O\left(\Delta x^{4}\right)
$$

- Ex. 2: use a parabola, fit the values on either side of the cell face and the derivative on the upstream side (equivalent to the QUICK scheme, $3^{\text {rd }}$ order)

$$
\phi_{e}=\frac{3}{4} \phi_{U}+\frac{1}{4} \phi_{D}+\left.\frac{\Delta \mathrm{x}}{4} \frac{\partial \phi}{\partial x}\right|_{U}
$$

- Similar schemes are obtained for derivatives (diffusive fluxes), see Ferziger and Peric (2002)
- Other Schemes: more complex and difficult to program
- Large number of approximations used for "convective" fluxes: Linear Upwind Scheme, Skewed Upwind schemes, Hybrid. Blending schemes to eliminate oscillations at higher order.

MIT OpenCourseWare
http://ocw.mit.edu

2.29 Numerical Fluid Mechanics

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

