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REVIEW Lecture 10:
• Classification of Partial Differential Equations (PDEs) and 

ionsexamples with finite difference discretizat

– Parabolic PDEs

– Elliptic PDEs

– Hyperbolic PDEs

• Error Types and Discretization Properties:

– Consistency:

– Truncation error:

– Error equation: (for linear systems)

– Stability: (for linear systems)

– Convergence:
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2.29 Numerical Fluid Mechanics

Spring 2015 – Lecture 11

REVIEW Lecture 10, Cont’d:
• Classification of PDEs and examples

• Error Types and Discretization Properties

• Finite Differences based on Taylor Series Expansions

– Higher Order Accuracy Differences, with Examples

• Incorporate more higher-order terms of the Taylor series expansion than 

strictly needed and express them as finite differences themselves (making 

them function of neighboring function values)

• If these finite-differences are of sufficient accuracy, this pushes the remainder 

to higher order terms => increased order of accuracy of the FD method

• General approximation:

– Taylor Tables or Method of Undetermined Coefficients (Polynomial Fitting)

• Simply a more systematic way to solve for coefficients ai
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FINITE DIFFERENCES – Outline for Today

• Classification of Partial Differential Equations (PDEs) and examples with 

finite difference discretizations (Elliptic, Parabolic and Hyperbolic PDEs)

• Error Types and Discretization Properties

– Consistency, Truncation error, Error equation, Stability, Convergence

• Finite Differences based on Taylor Series Expansions

– Higher Order Accuracy Differences, with Example

– Taylor Tables or Method of Undetermined Coefficients (Polynomial Fitting)

• Polynomial approximations 

– Newton’s formulas

– Lagrange polynomial and un-equally spaced differences 

– Hermite Polynomials and Compact/Pade’s Difference schemes 

– Boundary conditions

– Un-Equally spaced differences

– Error Estimation: order of convergence, discretization error, Richardson’s 

extrapolation, and iterative improvements using Roomberg’s algorithm
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References and Reading Assignments

• Chapter 23 on “Numerical Differentiation” and Chapter 18 on 
“Interpolation” of “Chapra and Canale, Numerical Methods for 
Engineers, 2006/2010/2014.”

• Chapter 3 on “Finite Difference Methods” of “J. H. Ferziger
and M. Peric, Computational Methods for Fluid Dynamics. 
Springer, NY, 3rd edition, 2002”

• Chapter 3 on “Finite Difference Approximations” of “H. Lomax, 
T. H. Pulliam, D.W. Zingg, Fundamentals of Computational 
Fluid Dynamics (Scientific Computation). Springer, 2003”
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Finite Differences using Polynomial approximations 

Numerical Interpolation: 

“Historical” Newton’s Iteration Formula
Standard triangular family of polynomials

Divided Differences: ci = ?

Newton’s Computational Scheme

2

3

0 0

x2

+



By recurrence:

First 

divided 

differences

Second 

divided 

differences

 Newton’s formula allow easy recursive 

computation of the coefficients of a polynomial 

of order n that interpolates n+1 data point 

 Derivative of that polynomial can then be 

expressed as a function of these n+1 data 

points (in our case, unknown fct values)
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Divided Differences

with equidistant step size implied
Equidistant Sampling

Triangular Family of Polynomials

Equidistant Sampling

Finite Differences using Polynomial approximations 

Equidistant Newton’s Interpolation
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Numerical Differentiation using Newton’s algorithm 

for equidistant sampling: 1st Order

Triangular Family of Polynomials

Equidistant Sampling

First order
x

f(x)

h

n=1First Derivatives
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x

f(x)

h h

n=2

Second order

Second Derivatives

n=3 Central Difference

Forward Differencen=2 

Central Difference

Forward Difference

2 22 2

Numerical Differentiation using Newton’s algorithm 

for equidistant sampling: 2nd Order
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Finite Differences using Polynomial approximations 

Numerical Interpolation: Lagrange Polynomials

(Reformulation of Newton’s polynomial)

x

f(x)
1

k-3 k-2 k-1 k k+1 k+2

Difficult to program

Difficult to estimate errors

Divisions are expensive

Important for numerical integration 

Nodal basis in FE
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• Use the values of the function and its derivative(s) at given points k
– For example, for values of the function and of its first derivatives at pts k

• General form for implicit/explicit schemes (here focusing on 

space)

– Generalizes the Lagrangian approach by using Hermitian interpolation

• Leads to the “Compact difference schemes” or “ Pade’ schemes ”

• Are implemented by the use of efficient banded solvers

• Derivatives are then also unknowns

Hermite Interpolation Polynomials and 

Compact / Pade’ Difference Schemes

1 1

( ) ( ) ( )
n m

k k k
k k k

uu x a x u b x
x 

 
   

 
 

m qs

i i j i xm
i r i pj i

ub a u
x

 

 

 
  

 
 



PFJL  Lecture 11,    11Numerical Fluid Mechanics2.29

FINITE DIFFERENCES: Higher Order Accuracy 

Taylor Tables for Pade’ schemes

u u u 1d e (au bu cu ?j 1 j j 1)x x x xj 1 j j 1

j

2

j 1

u
x j

j 1

j 1

j

j+1

Image by MIT OpenCourseWare.
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Sum each column starting from left and force the sums to be zero by proper choice of a, b, c, etc:

   

1 1 1 0 0 0
1 0 1 1 1 1

1 3 0 3 1 11 0 1 2 2 0
4

1 0 1 3 3 0
1 0 1 4 4 0

a
b

a b c d ec
d
e

       
      
     

          
     

     
            

Truncation error is sum of the first column that does not vanish in the table, here 6th column 
(divided by Δx):

4 5

5120x
j

x u
x



  
  

 

FINITE DIFFERENCES: Higher Order Accuracy 

Taylor Tables for Pade’ schemes, Cont’d
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Compact / Pade’ Difference Schemes: Examples

We can derive family of compact centered approximations for     up to 6th order using:

Comments:

• Pade’ schemes use 

fewer computational 

nodes and thus are 

more compact than CDS

• Can be advantageous 

(more banded systems!)
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Higher-Order Finite Difference Schemes

Considerations

• Retaining more terms in Taylor Series or in polynomial 

approximations allows to obtain FD schemes of increased 

order of accuracy

• However, higher-order approximations involve more nodes, 

hence more complex system of equations to solve and more 

complex treatment of boundary condition schemes

• Results shown for one variable still valid for mixed derivatives

• To approximate other terms that are not differentiated: reaction 

terms, etc

– Values at the center node is normally all that is needed

– However, for strongly nonlinear terms, care is needed (see later)

• Boundary conditions must be discretized
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Finite Difference Schemes: 

Implementation of Boundary conditions

• For unique solutions, information is needed at boundaries

• Generally, one is given either:

• Straightforward cases:

– If value is known, nothing special needed (one doesn’t solve for the BC)

– If derivatives are specified, for first-order schemes, this is also 

straightforward to treat

bnd

bnd bnd

bnd
( , )

i) the variable:   ( , ) ( )                                          (Dirichlet BCs)

ii) a gradient in a specific direction, e.g.:   = (t)        (Neumann BCs)

iii) a linear c
x t

u x x t u t
u
x



 





ombination of the two quantities                               (Robin BCs)
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Finite Difference Schemes: 

Implementation of Boundary conditions, Cont’d

• Harder cases: when higher-order approximations are used 

– At and near the boundary: nodes outside of domain would be needed

• Remedy: use different approximations at and near the boundary

– Either, approximations of lower order are used

– Or, approximations go deeper in the interior and are one-sided. For example,

• 1st order forward-difference:

• Parabolic fit to the bnd point and two inner points:

• Cubic fit to 4 nodes (3rd order difference):

• Compact schemes, cubic fit to 4 pts:

• In Open-boundary systems, boundary problem is not well posed =>

– Separate treatment for inflow/outflow points, multi-scale (embedded) approach 
and/or generalized inverse problem (using data in the interior)

bnd

2 1
1 2

( , ) 2 1

0 0
x t

u u u u u
x x x

 
    

 

bnd

2 2 2 2
3 2 1 2 3 1 1 3 1 2 1 3 2 1

( , ) 2 1 3 1 3 2

( ) ( ) ( ) ( ) 4 3  for equidistant nodes
( )( )( ) 2x t

u x x u x x u x x x xu u u u
x x x x x x x x

               
     

bnd

34 3 2 1

( , )

2 9 18 11 ( )  for equidistant nodes
6x t

u u u u u O x
x x

   
  

 

2 3 4
( , ) 1

1

18 9 2 6   for equidistant nodes
11 11bndx t

u u u x uu u
x
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2 3
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• Truncation error depends not only on grid spacing but also on the 

derivatives of the variable 

• Uniform error distribution can not be achieved on a uniform grid => 

non-uniform grids

– Use smaller (larger) Δx in regions where derivatives of the function are 

large (small) => uniform discretization error

– However, in some approximation (centered-differences), specific terms 

cancel only when the spacing is uniform

• Example: Lets define                                         and write the Taylor 

series at    :

Finite-Differences on Non-Uniform Grids: 1-D

2 3

1

1
( 1)

( ) ( ) '( ) ''( ) '''( ) ... ( )
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n
n

i i i i i i n

n
n
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n

xR f
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1 1 1,i i i i i ix x x x x x       

ix
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• Evaluate f(x) at xi+1 and xi-1 , subtract results, lead to central-difference

• For a non-uniform mesh, the leading truncation term is O(Δx)

– The more non-uniform the mesh, the larger the 1st term in truncation error

– If the grid contracts/expands with a constant factor re :

– Leading truncation error term is :

– If re is close to one, the first-order truncation error remains small: this is 

good for handling any types of unknown function f(x)

Non-Uniform Grids Example: 1-D Central-difference

2 3
1 1 1

1 1

2 3

1

( ) ( ) '( ) ''( ) '''( ) ... ( )
2! 3! !
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x x xf x f x x f x f x f x f x R
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x x xf x f x x f x f x f x f x R
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2 2 3 3
1 1 1 1

1 1 1 1 1 1

( ) ( )'( ) ''( ) '''( ) ...
2! ( ) 3! ( )

i i i i i i
i i i n

i i i i i i

f x f x x x x xf x f x f x R
x x x x x x
   

     

      
    

  

x 
= Truncation error

1i e ix r x  

(1 ) ''( )
2

er e i
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r x f x
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• What also matters is: “rate of error reduction as grid is refined”!

• Consider case where refinement is done by adding more grid points 

but keeping a constant ratio of spacing (geometric progression), i.e.

• For coarse grid pts to be collocated with fine-grid pts: (re,h)2 = re,2h

• The ratio of the two truncation errors at a common point is then:

which is                     since

– The factor R = 4 if re = 1 (uniform grid). R is actually minimum at re = 1.

– When re > 1 (expending grid) or re < 1 (contracting grid), the factor R > 4

Non-Uniform Grids Example: 1-D Central-difference

2
,2

,

(1 )
''( )

2
(1 )

''( )
2

h
e h i

i

h
e h i

i

r x
f x

R
r x

f x

 


 

2 2
1 ,2
h h

i e h ix r x  

1 ,i e h ix r x  

2
,

,

(1 )e h

e h

r
R

r



2

1 , 1( 1)h
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Non-Uniform Grids Example: 1-D Central-difference

Conclusions

• When a non-uniform “geometric progression” grid is refined, error due 

to the 1st order term decreases faster than that of 2nd order term !

• Since (re,h)2 = re,2h , we have re,h → 1 as the grid is refined. Hence, 

convergence becomes asymptotically 2nd order (1st order term 

cancels)

• Non-uniform grids are thus useful, if one can reduce Δx in regions 

where derivatives of the unknown solution are large

• Automated means of adapting the grid to the solution (as it evolves)

• However, automated grid adaptation schemes are more challenging in 

higher dimensions and for multivariate (e.g. physics-biology-acoustics) or 

multiscale problems

• (Adaptive) Grid generation still an area of active research in CFD

• Conclusions also valid for higher dimensions and for other methods 

(finite elements, etc)
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