

2.29 Numerical Fluid Mechanics Spring 2015 – Lecture 23

REVIEW Lecture 22:

Grid Generation

- Basic concepts and structured grids, Cont'd
 - General coordinate transformation
 - Differential equation methods
 - Conformal mapping methods
- Unstructured grid generation
 - Delaunay Triangulation
 - Advancing Front method
- Finite Element Methods

$$\tilde{u}(x) = \sum_{i=1}^{n} a_i \phi_i(x) \implies L(\tilde{u}(x)) - f(x) = R(x) \neq 0$$

- Introduction
- Method of Weighted Residuals:
 - Galerkin, Subdomain and Collocation
- General Approach to Finite Elements:
 - Steps in setting-up and solving the discrete FE system
 - Galerkin Examples in 1D and 2D

$$\iint_{t \in V} R(\mathbf{x}) w_i(\mathbf{x}) d\mathbf{x} dt = 0, \quad i = 1, 2, \dots, n$$

TODAY (Lecture 23): Intro. to Finite Elements, Cont'd

Finite Element Methods

- Introduction
- Method of Weighted Residuals: Galerkin, Subdomain and Collocation
- General Approach to Finite Elements:
 - Steps in setting-up and solving the discrete FE system
 - Galerkin Examples in 1D and 2D
- Computational Galerkin Methods for PDE: general case
 - Variations of MWR: summary
 - Finite Elements and their basis functions on local coordinates (1D and 2D)
 - Isoparametric finite elements and basis functions on local coordinates (1D, 2D, triangular)
- High-Order: Motivation
- Continuous and Discontinuous Galerkin FE methods:
 - CG vs. DG
 - Hybridizable Discontinuous Galerkin (HDG): Main idea and example
- DG: Worked simple example
- Finite Volume on Complex geometries

References and Reading Assignments Finite Element Methods

- Chapters 31 on "Finite Elements" of "Chapra and Canale, Numerical Methods for Engineers, 2006."
- Lapidus and Pinder, 1982: Numerical solutions of PDEs in Science and Engineering.
- Chapter 5 on "Weighted Residuals Methods" of Fletcher, Computational Techniques for Fluid Dynamics. Springer, 2003.
- Some Refs on Finite Elements only:
 - Hesthaven J.S. and T. Warburton. Nodal discontinuous Galerkin methods, vol. 54 of Texts in Applied Mathematics. Springer, New York, 2008. Algorithms, analysis, and applications
 - Mathematical aspects of discontinuous Galerkin methods (Di Pietro and Ern, 2012)
 - Theory and Practice of Finite Elements (Ern and Guermond, 2004)

General Approach to Finite Elements

- 1. Discretization: divide domain into "finite elements"
 - Define nodes (vertex of elements) and nodal lines/planes
- 2. Set-up Element equations

i. Choose appropriate basis functions $\phi_i(x)$: $\tilde{u}(x) = \sum_{i=1}^n a_i \phi_i(x)$

• 1D Example with Lagrange's polynomials: Interpolating functions $N_i(x)$

$$\tilde{u} = a_0 + a_1 x = u_1 N_1(x) + u_2 N_2(x)$$
 where $N_1(x) = \frac{x_2 - x_1}{x_2 - x_1}$ and $N_2(x) = \frac{x - x_1}{x_2 - x_1}$

- With this choice, we obtain for example the 2nd order CDS and Trapezoidal rule: $\frac{d \tilde{u}}{dx} = a_1 = \frac{u_2 - u_1}{x_2 - x_1}$ and $\int_{x_1}^{x_2} \tilde{u} \, dx = \frac{u_1 + u_2}{2} (x_2 - x_1)$
- ii. Evaluate coefficients of these basis functions by approximating the equations to be solved in an optimal way
 - This develops the equations governing the element's dynamics
 - Two main approaches: Method of Weighted Residuals (MWR) or Variational Approach

 \Rightarrow Result: relationships between the unknown coefficients a_i so as to satisfy the PDE in an optimal approximate way

Node 1

(i)

(ii)

(iii)

(iv)

Image by MIT OpenCourseWare.

 (ii) The shape function or linear approximation of the line element
 (iii) and (iv) Corresponding interpolation

functions

Node 2

 u_2

General Approach to Finite Elements, Cont'd

2. Set-up Element equations, Cont'd

 Mathematically, combining i. and ii. gives the element equations: a set of (often linear) algebraic equations for a given element *e*:

$$\mathbf{K}_{e} \, \mathbf{u}_{e} = \mathbf{f}_{e}$$

where \mathbf{K}_{e} is the element property matrix (stiffness matrix in solids), \mathbf{u}_{e} the vector of unknowns at the nodes and \mathbf{f}_{e} the vector of external forcing

- 3. Assembly:
 - After the individual element equations are derived, they must be assembled: i.e. impose continuity constraints for contiguous elements
 - This leas to: $\mathbf{K} \mathbf{u} = \mathbf{f}$

where \mathbf{K} is the assemblage property or coefficient matrix, \mathbf{u} the vector of unknowns at the nodes and \mathbf{f} the vector of external forcing

- 4. Boundary Conditions: Modify " $\mathbf{K} \mathbf{u} = \mathbf{f}$ " to account for BCs
- 5. Solution: use LU, banded, iterative, gradient or other methods
- 6. Post-processing: compute secondary variables, errors, plot, etc

Galerkin's Method: Simple Example

Galerkin's Method: Simple Example, Cont'd

ii. Optimal coefficients with MWR: set weighted residuals (remainder) to zero

Remainder:

$$R = -1 + \sum_{j=1}^{N} a_j (jx^{j-1} - x^j)$$

 $R = \frac{d \tilde{y}}{dx} - \tilde{y}$

Galerkin \Rightarrow set remainder orthogonal to each shape function:

Denoting inner products as: $(f,g) = \langle f,g \rangle = \int_{\Omega} f g dx$

leads to:
$$(R, x^{k-1}) = 0, k = 1, ..., N$$

which then leads to the Algebraic Equations:

$$\begin{aligned} \mathbf{Ma} &= \mathbf{d} & k = 1, ..., N \\ & j = 1, ..., N \\ & d_k = (1, x^{k-1}) \end{aligned}$$
$$m_{kj} &= (jx^{j-1} - x^j, x^{k-1}) = \frac{j}{j+k-1} - \frac{1}{j+k} \end{aligned}$$

Galerkin's Method Simple Example, Cont'd

3 - 4. Assembly and boundary conditions:

Already done (element fills whole domain)

<u>5. Solution:</u> For N = 3

BCs already set

 $\mathbf{a}^{T} = [1.0141, 0.4225, 0.2817];$

$$\tilde{y} = 1 + 1.0141x + 0.4225x^2 + 0.2817x^3$$

L₂ Error:

$$L_2 = ||y - \widetilde{y}||_2 = \sqrt{\sum\limits_{\ell=1}^L (y(x_\ell) - \widetilde{y}(x_\ell))^2}$$

Comparisons with other Weighted Residual Methods

$$\frac{dy}{dx} - y = 0$$

$$\widetilde{y} = 1 + \sum_{j=1}^{N} a_j x^j$$

Least Squares

Subdomain Method

$$\begin{bmatrix} 1/3 & 1/4 & 1/5 \\ 1/4 & 8/15 & 2/3 \\ 1/5 & 2/3 & 33/35 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 2/3 \\ 3/4 \end{bmatrix} \qquad \begin{bmatrix} 5/18 & 8/81 & 11/324 \\ 3/18 & 20/81 & 69/324 \\ 1/18 & 26/81 & 163/324 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

$$\begin{bmatrix} 1/2 & 2/3 & 3/4 \\ 1/6 & 5/12 & 11/20 \\ 1/12 & 3/10 & 13/30 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1/2 \\ 1/3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 0.75 & 0.625 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Comparisons with other Weighted Residual Methods

Comparison of coefficients for approximate solution of dy/dx - y = 0

Coefficient	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃
Least squares	1.0131	0.4255	0.2797
Galerkin	1.0141	0.4225	0.2817
Subdomain	1.0156	0.4219	0.2813
Collocation	1.0000	0.4286	0.2857
Taylor series	1.0000	0.5000	0.1667
Optimal $L_{2,d}$	1.0138	0.4264	0.2781

Image by MIT OpenCourseWare.

Comparison	of approx	imate solutions	of dy/dx -	y = 0
------------	-----------	-----------------	--------------	-------

x	Least squares	Galerkin	Subdomain	Collocation	Taylor series	Optimal $L_{2,d}$	Exact
0	1 0000	1 0000	1.0000	1.0000	1 0000	1 0000	1.0000
0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.2	1.2219	1.2220	1.2223	1.2194	1.2213	1.2220	1.2214
0.4	1.4912	1.4913	1.4917	1.4869	1.4907	1.4915	1.4918
0.6	1.8214	1.8214	1.8220	1.8160	1.8160	1.8219	1.8221
0.8	2.2260	2.2259	2.2265	2.2206	2.2053	2.2263	2.2255
1.0	2.7183	2.7183	2.7187	2.7143	2.6667	2.7183	2.7183
$\ y_a - y \ _{2,d}$	0.00105	0.00103	0.00127	0.0094	0.0512	0.00101	

Image by MIT OpenCourseWare.

Galerkin's Method in 2 Dimensions

Differential Equation

L(u) = 0 $\phi^{(n)}(x,y_2)$ **Boundary Conditions** S(u) = 0Shape/Test Function Solution (u_o satisifies BC) $\widetilde{u} = u_0(x,y) + \sum_{j=1}^{N} a_j \phi_j(x,y)$ $\phi^{(n)}(x_1,y)$ $\phi^{(n)}(x_2,y)$ D(x,y)Remainder (if *L* is linear Diff. Eqn.) $R(u_0, a_1, \dots a_N, x, y) = L(\widetilde{u}) = L(u_0) + \sum_{j=1}^N a_j L(\phi_j(x, y))$ Inner Product: $(f,g) = \int \int_{D} fg dx dy$ $\phi^{(n)}(x,y_l)$ Galerkin's Method $(R,\phi_k)=0$ Х

$$\sum_{j=1}^N a_j(L(\phi_j),\phi_k)=-(L(u_0),\phi_k)$$

Galerkin's Method: Viscous Flow in Duct, Cont'd

Remainder:

$$R = -\left[\sum_{i=1,3,5...}^{N} \sum_{j=1,3,5...}^{N} a_{ij} \cos i\frac{\pi}{2} x \cos j\frac{\pi}{2} y \left\{ \left(i\frac{\pi}{2}\right)^{2} + \left(j\frac{\pi}{2}\right)^{2} \right\} - 1 \right]$$

Inner product (set to zero):

$$\left(R, \cos k \frac{\pi}{2} x \cos \ell \frac{\pi}{2} y\right)$$
, k, $\ell = 1, 3, 5, ...$

Analytical Integration:

$$a_{ij} = \left(\frac{8}{\pi^2}\right)^2 \frac{(-1)^{(i+j)/2-1}}{ij(i^2+j^2)}$$

Galerkin Solution:

$$\widetilde{w} = \left(\frac{8}{\pi^2}\right)^2 \sum_{i=1,3,5\dots}^N \sum_{j=1,3,5\dots}^N \frac{(-1)^{(i+j)/2-1}}{ij(i^2+j^2)} \cos i\frac{\pi}{2} x \cos j\frac{\pi}{2} y$$

Flow Rate:

$$\dot{q} = \int_{-1}^{1} \int_{-1}^{1} \widetilde{w}(x, y) dx dy$$
$$= 2 \left(\frac{8}{\pi^2}\right)^3 \sum_{i=1,3,5\dots}^{N} \sum_{j=1,3,5\dots}^{N} \frac{1}{i^2 j^2 (i^2 + j^2)}$$

Numerical Fluid Mechanics

Computational Galerkin Methods: Some General Notes

Differential Equation: L(u) = 0

 $(R, w_k(\mathbf{x})) = 0, k = 1, \dots N$

 $\lim_{N\to\infty} ||\widetilde{u}-u||_2 = 0$

Different forms of the Methods of Weighted Residuals: Summary

Inner Product (L(u), w) = 0

How to obtain solution for Nodal Unknowns? Modal ϕ_k vs. Nodal (Interpolating) N_i Basis Fcts.

•
$$\tilde{u}(x, y) = \sum_{j=1}^{N} \overline{u}_{j} N_{j}(x, y)$$

• $\tilde{u}(x, y) = \sum_{k=1}^{N} a_{k} \phi_{k}(x, y)$
 $\Rightarrow \overline{u}_{j} = \sum_{k=1}^{N} a_{k} \phi_{k}(x_{j}, y_{j})$
 $\Rightarrow \overline{u} = \Phi \mathbf{a} \Rightarrow \mathbf{a} = \Phi^{-1} \overline{u}$
• $\tilde{u}(x, y) = \sum_{k=1}^{N} \left(\sum_{j=1}^{N} (\Phi^{-1})_{kj} \overline{u}_{j}\right) \phi_{k}(x, y)$
 $= \sum_{j=1}^{N} \overline{u}_{j} \left(\sum_{k=1}^{N} (\Phi^{-1})_{kj} \phi_{k}(x, y)\right)$
 $\Rightarrow N_{j}(x, y) = \sum_{k=1}^{N} (\Phi^{-1})_{kj} \phi_{k}(x, y)$

Finite Elements 1-dimensional Elements

Trial Function Solution

$$\widetilde{u} = \sum_{j=1}^{N} N_j(x) \overline{u}_j$$

Interpolation (Nodal) Functions

$$N_2 = \frac{x - x_1}{x_2 - x_1}$$

$$N_2 = \frac{x - x_3}{x_2 - x_3}$$

$$N_3 = \frac{x - x_2}{x_3 - x_2}$$

 $N_3 = \frac{x - x_4}{x_3 - x_4}$

Image by MIT OpenCourseWare.

Trial Function Solution

Two functions per element

Finite Elements 1-dimensional Elements

Image by MIT OpenCourseWare.

 $N_4 = \frac{(x - x_3)(x - x_5)}{(x_4 - x_3)(x_4 - x_5)}$

Three functions per element

$$N_2 = \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)}$$

Complex Boundaries Isoparametric Elements

Image by MIT OpenCourseWare.

Finite Elements in 1D:

Nodal Basis Functions in the Local Coordinate System

(2.2.29)
$$\phi(\xi) = a + b\xi + c\xi^2.$$

By introducing the requirement that $\phi_{-1}|_{-1} = 1$ and $\phi_{-1}|_0 = \phi_{-1}|_1 = 0$, we obtain the matrix equation

(2.2.30)
$$\begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1\\1 & 0 & 0\\1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a\\b\\c \end{bmatrix},$$

Function

 $\phi_{-1}(\xi)$

Degree

Linear

*	19-1/3	J \$ 1/3
1	1/	Va-+
\$-1-2 ×	Å	Λ
-1	-1/3 1/3	
	<i>(b)</i>	

Figure 2.7. Quadratic (a) and cubic (b) basis functions defined in local ξ coordinate system.

	$\phi_1(\xi)$	$\frac{1}{2}(1+\xi)$	
Quadratic	$\phi_{-1}(\xi)$	$-\frac{1}{2}\xi(1-\xi)$	
	$\phi_0(\xi)$	$1-\xi^2$	
	$\phi_1(\xi)$	$\frac{1}{2}\xi(1+\xi)$	Figu
Cubic	$\phi_{-1}(\xi)$	$\frac{1}{16}(-9\xi^3+9\xi^2+\xi-1)$ or $\frac{1}{16}(1-\xi)(9\xi^2-1)$	basi
	$\phi_{-1/3}(\xi)$	$\frac{9}{16}(3\xi^3 - \xi^2 - 3\xi + 1)$ or $\frac{9}{16}(3\xi - 1)(\xi^2 - 1)$	
	$\phi_{1/3}(\xi)$	$\frac{9}{16}(-3\xi^3-\xi^2+3\xi+1)$ or $-\frac{9}{16}(3\xi+1)(\xi^2-1)$	
	$\phi_1(\xi)$	$\frac{1}{16}(9\xi^3+9\xi^2-\xi-1)$ or $\frac{1}{16}(1+\xi)(9\xi^2-1)$	
	© Wil	ey-Interscience. All rights reserved. This content is ex	cluded f

Form $(-1 \le \xi \le 1)$

© Wiley-Interscience. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: pp. 63-65 in Lapidus, L., and G. Pinder. *Numerical Solution of Partial Differential Equations in Science and Engineering.* 1st ed. Wiley-Interscience, 1982. [Preview with Google Books].

Numerical Fluid Mechanics

TABLE 2.4.Linear, Quadratic, and Cubic Basis FunctionsDefined in the Dimensionless ξ Coordinate System

 $\frac{1}{2}(1-\xi)$

Finite Elements 2-dimensional Elements

Image by MIT OpenCourseWare.

Linear Interpolation (Nodal) Functions

$$N_1 = 0.25(1 - \xi)(1 - \eta)$$

$$N_2 = 0.25(1 + \xi)(1 - \eta)$$

$$N_3 = 0.25(1 - \xi)(1 + \eta)$$

$$N_4 = 0.25(1 + \xi)(1 + \eta)$$

$$N_{\ell} = 0.25(1 + \xi_{\ell}\xi)(1 + \eta_{\ell}\eta)$$

$$\widetilde{u} = \sum_{i=1}^{N} \sum_{j=1}^{N} N_{ij}(x) \overline{u}_{ij}$$

$$\widetilde{u} = \sum_{\ell=1}^{4} N_{\ell}(\xi, \eta) \overline{u}_{\ell}$$

Image by MIT OpenCourseWare.

Quadratic Interpolation (Nodal) Functions

$$\prod_{r \neq i} \frac{(\xi - \xi_r)(\eta - \eta_r)}{(\xi_i - \xi_r)(\eta_i - \eta_r)}$$

Numerical Fluid Mechanics

Finite Elements in 2D: Nodal Basis Functions in the Local Coordinate System

Figure 2.11. (c) Two-dimensional Lagrangian basis function that is cubic along each side. Note the occurrence of four interior nodes where the basis function is defined to be zero.

© Wiley-Interscience. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Figure 2.11. (a) Two-dimensional basis function that is linear along each side. (b) Two-dimensional Lagrangian basis function that is quadratic along each side. Note the occurrence of a central node where the basis function must be zero.

(b)

(-1,-1)

© Wiley-Interscience. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Table 2.7A in Lapidus, L., and G. Pinder. *Numerical Solution of Partial Differential Equations in Science and Engineering*. 1st ed. Wiley-Interscience, 1982. [Preview with Google Books].

Finite Element Solution

$$\widetilde{w} = \sum_{j=1}^{N} \overline{w}_j N_j(x,y)$$

$$N_j = 0.25(1 + \xi_j \xi)(1 + \eta_j \eta)$$

$$\left(\frac{\partial^2 \widetilde{w}}{\partial x^2}, N_k\right) + \left(\frac{\partial^2 \widetilde{w}}{\partial y^2}, N_k\right) = (-1, N_k)$$

Integration by Parts

$$\left(\frac{\partial^2 w}{\partial x^2}, N_k\right) \equiv \int_{-1}^{1} \frac{\partial^2 w}{\partial x^2} N_k dx = \left[\frac{\partial w}{\partial x} N_k\right]_{-1}^{1} - \int_{-1}^{1} \frac{\partial w}{\partial x} \frac{dN_k}{dx} dx$$

$$\left(\frac{\partial^2 \widetilde{w}}{\partial x^2}, N_k\right) = -\left(\frac{\partial \widetilde{w}}{\partial x}, \frac{\partial N_k}{\partial x}\right) \qquad \text{(for center nodes)}$$

Algebraic Equations for center nodes $-\sum_{j=1}^{N} \left(\int_{-1}^{1} \int_{-1}^{1} \frac{\partial N_{j}}{\partial x} \frac{\partial N_{k}}{\partial x} + \frac{\partial N_{j}}{\partial y} \frac{\partial N_{k}}{\partial y} dx dy \right) \overline{w}_{j} = -\int_{-1}^{1} \int_{-1}^{1} 1 N_{k} dx dy, k = 1, \dots N$

Numerical Fluid Mechanics

Finite Elements 2-dimensional Triangular Elements

Triangular Coordinates

Linear Polynomial Modal Basis Functions:

$$u(x, y) = a_0 + a_{1,1} x + a_{1,2} y$$

$$\begin{array}{c} u_{1}(x,y) = a_{0} + a_{1,1} x_{1} + a_{1,2} y_{1} \\ u_{2}(x,y) = a_{0} + a_{1,1} x_{2} + a_{1,2} y_{2} \\ u_{3}(x,y) = a_{0} + a_{1,1} x_{3} + a_{1,2} y_{3} \end{array} \right\} \quad \Rightarrow \quad \begin{bmatrix} 1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3} \end{bmatrix} \quad \begin{bmatrix} a_{0} \\ a_{1,1} \\ a_{1,2} \end{bmatrix} = \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \end{bmatrix}$$

Nodal Basis (Interpolating) Functions:

 $u(x, y) = u_1 N_1(x, y) + u_2 N_2(x, y) + u_3 N_3(x, y)$

$$N_{1}(x, y) = \frac{1}{2A_{T}} \left[(x_{2}y_{3} - x_{3}y_{2}) + (y_{2} - y_{3}) x + (x_{3} - x_{2}) y \right]$$
$$N_{2}(x, y) = \frac{1}{2A_{T}} \left[(x_{3}y_{1} - x_{1}y_{3}) + (y_{3} - y_{1}) x + (x_{1} - x_{3}) y \right]$$
$$N_{3}(x, y) = \frac{1}{2A_{T}} \left[(x_{1}y_{2} - x_{2}y_{1}) + (y_{1} - y_{2}) x + (x_{2} - x_{1}) y \right]$$

HIGHER-ORDER: INCREASED ACCURACY FOR SAME EFFICIENCY

- Higher-order and low-order should be compared:
 - At the same accuracy (most comp. efficient scheme wins)
 - At the same comp. efficiency (most accurate scheme wins) in literature, difficult
- Higher-order can be more accurate for the same comp. efficiency

Rarely done jointly

ACCURATE NUMERICAL MODELING OF PHYTOPLANKTON

- Biological patch (NPZ model)
 - ~19 tidal cycles (8.5 days)
 - Mean flow + daily tidal cycle
- Two discretizations of similar cost
 - 6th order scheme on coarse mesh
 - 2nd order scheme on fine mesh

• Numerical diffusion of lower-order scheme modifies the concentration of biomass in patch

True Limit cycle from parameters

Modified by _____ numerical error low order

© Springer-Verlag. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Ueckermann, Mattheus P., and Pierre FJ Lermusiaux. "High-order Schemes for 2D Unsteady Biogeochemical Ocean Models." *Ocean Dynamics* 60, no. 6 (2010): 1415-45.

DISCONTINUOUS GALERKIN (DG) FINITE ELEMENTS

• The basis can be continuous or discontinuous across elements

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- Advantages of DG:
 - Efficient data-structures for parallelization and computer architectures
 - Flexibility to add stabilization for advective terms (upwinding, Riemann solvers)
 - Local conservation of mass/momentum
- Disadvantages:
 - Difficult to implement
 - Relatively new (Reed and Hill 1978, Cockburn and Shu 1989-1998)
 - Standard practices still being developed
 - Expensive compared to Continuous Galerkin for elliptic problems
 - Numerical stability issues due to Gibbs oscillations

HYBRID DISCONTINUOUS GALERKIN (HDG) COMPUTATIONALLY COMPETITIVE WITH CG

Biggest concern with DG: Efficiency for elliptic problems

• For DG, unknowns are **duplicated** at edges of element

HDG

- HDG is competitive to CG while retaining properties of DG
- HDG parameterizes element-local solutions using new edge-space λ

Key idea: Given initial and boundary conditions for a domain, the interior solution can be calculated (with HDG, also in each local element)

Continuity on the edge space of:

- Fields
- Normal component of total fluxes, e.g. numerical trace of total stress

Nguyen et al. (JCP2009)

Cockburn et al. (SJNA2009)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Next-generation CFD for Regional Ocean Modeling: Hybrid Discontinuous Galerkin (HDG) FEMs

The Lock Exchange Problem: Gr=1.25e7

DG – Worked Example

Choose function space

$$W_h^p = \left\{ w \in L^2(\Omega) : w \mid_K \in \mathcal{P}^p(K), \forall K \in \mathcal{T}_h \right\}$$

Original eq. :

MWR :

Integrate by parts :

Divergence theorem, leads to "weak form": $\int_{K} w \frac{\partial u}{\partial t} dK - \int_{K} \nabla w \cdot (\vec{c}u) dK + \int_{\partial K} w \hat{n} \cdot \vec{c} \hat{u} d\partial K = 0$

$$\varepsilon^{\partial} \partial \Omega$$

 K_i

 K_i

 K_i

 K_i

 T_h

 Σ°

 Ω

 $\int_{K} w \frac{\partial u}{\partial t} dK + \int_{K} w \nabla \cdot (\vec{c}u) dK = 0$

 $\int_{K} w \frac{\partial u}{\partial t} dK - \int_{K} \nabla w \cdot (\vec{c}u) dK + \int_{K} \nabla \cdot (\vec{c}uw) dK = 0$

 $\frac{\partial u}{\partial t} + \nabla \cdot (\vec{c}u) = 0$

DG – Worked Example, Cont'd

Substitute basis and test functions, which are the same for Galerkin FE methods

DG – Worked Example, Cont'd

- Substitute for matrices
 - M- Mass matrix
 - K- Stiffness or Convection matrix
- Solve specific case of 1D eq.

$$\begin{aligned} \frac{\partial u_j}{\partial t} \int_K \theta_i \theta_j dK - \vec{c} u_j \int_K \nabla \theta_i \cdot (\theta_j) dK + \vec{c} \hat{u}_j \cdot \int_{\partial K} \hat{n}(\theta_j \theta_i) d\partial K &= 0\\ \mathbf{M}_{ij} \frac{\partial u_j}{\partial t} - \mathbf{K}_{ij} \vec{c} u_j + \vec{c} \hat{u}_j \cdot \int_{\partial K} \hat{n}(\theta_j \theta_i) d\partial K &= 0 \end{aligned}$$

Euler time-integration :

 $1D: \mathbf{M}_{ij}\frac{\partial u_j}{\partial t} - \mathbf{K}_{ij}\vec{c}u_j + \vec{c}\hat{u}_j \cdot \hat{n}(\theta_j\theta_i) = 0$

 $\hat{u}_j = \frac{u_j^+ + u_h^-}{2} - \frac{c}{|c|} \frac{u_j^+ - u_h^-}{2}$

$$1D: \quad u_j^{n+1} = u_j^n + \Delta t \mathbf{M}^{-1} (\mathbf{K}_{ij} \vec{c} u_j - \vec{c} \hat{u}_j \cdot \hat{n} \delta_{ij})$$

Fluxes: central with upwind :

DG – Worked Example - Code

clear all, clc, clf, close all

```
syms x
%create nodal basis
%Set order of basis function
%N >=2
N = 3;
%Create basis
if N==3
 theta = [1/2*x^2-1/2*x;
           1- x^2;
          1/2*x^{2+1}/2*x];
else
xi = linspace (-1, 1, N);
 for i=1:N
  theta(i) = sym('1');
  for j=1:N
   if j~=i
    theta(i) = \dots
      theta(i) * (x-xi(j)) / (xi(i) - xi(j));
   end
  end
 end
```

```
%Create mass matrix
for i = 1:N
for j = 1:N
  %Create integrand
  intgr = int(theta(i) *theta(j));
 %Integrate
 M(i,j) =...
          subs(intqr,1)-subs(intqr,-1);
end
end
%create convection matrix
for i = 1:N
for j = 1:N
  %Create integrand
  intgr = \dots
          int(diff(theta(i))*theta(j));
  %Integrate
 K(i, j) = ...
          subs(intgr,1)-subs(intgr,-1);
 end
end
```

end

DG – Worked Example – Code Cont'd

```
%% Tnitialize u
Nx = 20;
dx = 1./Nx;
%Multiply Jacobian through mass matrix.
%Note computationl domain has length=2,
actual domain length = dx
M=M*dx/2;
%Create "mesh"
x = zeros(N, Nx);
for i = 1:N
    x(i,:) = ...
 dx/(N-1)*(i-1):dx:1-dx/(N-1)*(N-i);
end
%Initialize u vector
u = \exp(-(x-.5).^{2}/.1^{2});
%Set timestep and velocity
dt=0.002; c=1;
%Periodic domain
ids = [Nx, 1:Nx-1];
```

```
%Integrate over time
for i = 1:10/dt
   u0=u;
    %Integrate with 4th order RK
  for irk=4:-1:1
    %Always use upwind flux
    r = c K^* u;
    %upwinding
    r(end,:) = r(end,:) - c*u(end,:);
    %upwinding
    r(1,:) = r(1,:) + c*u(end,ids);
    %RK scheme
    u = u0 + dt/irk*(M\r);
    end
    %Plot solution
    if ~mod(i,10)
        plot(x,u, 'b')
        drawnow
    end
 end
end
```

MIT OpenCourseWare http://ocw.mit.edu

2.29 Numerical Fluid Mechanics Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.