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2.29 Numerical Fluid Mechanics 

Spring 2015 – Lecture 5

Review of Lecture 4
• Roots of nonlinear equations

– Bracketing Methods

• Example: Heron’s formula

• Bisection and False Position

– “Open” Methods

• Fixed-point Iteration (General method or Picard Iteration)

– Examples, Convergence Criteria 

– Order of Convergence

• Newton-Raphson

– Convergence speed and examples

• Secant Method

– Examples, Convergence and efficiency

• Extension of Newton-Raphson to systems of nonlinear equations

– Roots of Polynomial (all real/complex roots)

• Open methods (applications of the above for complex numbers) and Special 
Methods (e.g. Muller’s and Bairstow’s methods)

• Systems of Linear Equations
– Motivations and Plans

– Direct Methods

Reference: Chapra and Canale, 

Chapters 5 and 6
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TODAY’s Lecture: Systems of Linear Equations

• Direct Methods 

– Cramer’s Rule

– Gauss Elimination

• Algorithm

• Numerical implementation and stability

– Partial Pivoting

– Equilibration

– Full Pivoting

– Well suited for dense matrices 

– Issues: round-off, cost, does not vectorize/parallelize well

• Special cases, Multiple right hand sides, Operation count

– LU decomposition/factorization

– Error Analysis for Linear Systems

– Condition Number

– Special Matrices: Tri-diagonal systems

• Iterative Methods 

– Jacobi’s method

– Gauss-Seidel iteration

– Convergence
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Reading Assignment

• Chapters 9 and 10 of “Chapra and Canale, Numerical 
Methods for Engineers, 2006/2010/204.”
– Any chapter on “Solving linear systems of equations” in references on 

CFD that we provided. For example: chapter 5 of “J. H. Ferziger and 
M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, 
3rd edition, 2002”
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Direct Methods for Small Systems: 

Determinants and Cramer’s Rule

Linear System of Equations:

11 12 13

22 23 21 23 21 22

21 22 23 11 12 13

32 33 31 33 31 32

31 32 33

a a a
a a a a a a

D a a a a a a
a a a a a a

a a a
   

Recall, for a 3 by 3 matrix, the determinant is:

Recall, for a 2 by 2 matrix, the determinant is:
11 12

11 22 21 12

21 22

a a
D a a a a

a a
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Direct Methods for small systems: 

Determinants and Cramer’s Rule

Example: Cramer’s Rule, n=2

“Each unknown xi in a system of linear algebraic equations 

can be expressed as a fraction of two determinants: 

• Denominator is determinant D
• Numerator is D but with column i replaced by b”

Cramer’s rule becomes impractical for n>3:

The number of operations is of O(n!)

thi  column

11 1 1

2

1

n

n n nn
i

a b a
b

a b a
x

D


Numerical case:

Cramer’s rule: 

11 12

21 22

a a
A

a a
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Direct Methods for large dense systems 

Gauss Elimination

• Main idea: “combine equations so as to 

eliminate unknowns systematically”

– Solve for each unknown one by one

– Back-substitute result in the original equations 

– Continue with the remaining unknowns

• General Gauss Elimination Algorithm

i. Forward Elimination/Reduction to Upper 

Triangular Systems)

ii. Back-Substitution

• Comments:

• Well suited for dense matrices

• Some modification of above simple algorithm 

needed to avoid division by zero and other pitfalls

Linear System of Equations
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Reduction / Forward Elimination

Step 0Linear System of Equations

If a11 is non zero, we can eliminate x1 from the remaining equations 2 to (n-1)

by multiplying equation 1 with       and subtracting the result from equation i .

This leads to the following algorithm for “Step 1”:

1

11

ia
a

Gauss Elimination
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Reduction / Forward Elimination:   Step 1

i

j

(is called Pivot equation for step 1)

Gauss Elimination

a11 is called 

pivot element:

Notes: 
• Result of step 1: last (n-1) 

equations have (n-1) unknowns

• Pivot a11 needs to be non-zero

Subtract multiple of row 1 from rows 2 to n
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Gauss Elimination

Reduction:  Step k

Recursive repetition of step 1 

for successively reduced set 

of (n-k) equations:

( 1)

, 1

k
n k ka x



The result after 

completion of step k is:

First non-zero element on row n:
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Reduction/Elimination: Step k

Gauss Elimination

Reduction: Step (n-1)
Back-Substitution

Result after step (n-1) is an 

Upper triangular system!
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Gauss Elimination: 

Number of Operations

:  n-k divisions

:  2 (n-k) (n-k+1) additions/multiplications

:  2 (n-k) additions/multiplications

For reduc., total number of ops: 
21

3

1

2

1 1

3 ( 1) 2 ( 1) 2
3( ) 2( ) ( 1) ( )

2 3 3

( 1) ( 1) (2 1)
Use:    and   

2 6

n

k
n n

i i

n n n nn k n k n k O n

n n n n ni i





 

 
       

  
 



 
Back-Substitution

:  (n-k-1)+(n-k)+2=2(n-k) +1  additions/multiplications 
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         Hence, total number of ops is:

(the first 1 before the sum is for xn)

Grand total number of ops is                            :3 32
( ) ( )
3

O n O n • Grows rapidly with n 

• Most ops occur in elimination step 

Reduction/Elimination: Step k
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Gauss Elimination: 

Issues and Pitfalls to be addressed

• Division by zero: 

– Pivot elements        must be non-zero and should not be close to zero

• Round-off errors 

– Due to recursive computations and so error propagation

– Important when large number of equations are solved

– Always substitute solution found back into original equations

– Scaling of variables can be used

• Ill-conditioned systems

– Occurs when one or more equations are nearly identical

– If determinant of normalized system matrix A is close to zero, system will be 
ill-conditioned (in general, if A is not well conditioned)

– Determinant can be computed using Gauss Elimination

• Since forward-elimination consists of simple scaling and addition of equations, 
the determinant is the product of diagonal elements of the Upper Triangular 
System

( )

,

k
k ka
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Gauss Elimination: Pivoting

Partial Pivoting by Columns

Row k

Row i

Pivot Elements

Required at 

each step!

Reduction

Step k
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Gauss Elimination: Pivoting

Pivot Elements

Reduction

Step k

Partial Pivoting by Columns:

i.e. pivot is chosen with each column

New Row k

New Row i

Required at 

each step!

A. Partial Pivoting 
i. Search for largest available coefficient in column below pivot element

ii. Switch rows k and i

B. Complete Pivoting
i. As for Partial, but search both rows and columns 

ii. Rarely done since column re-ordering changes order of x’s, hence more complex code

Two Solutions: 
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Gauss Elimination: Pivoting Example 
(for division by zero but also reduces round-off errors)

Example, n=2

Cramer’s Rule - Exact

Direct Gaussian Elimination, no pivoting

2-digit Arithmetic

1% error

100% error

n=2

a = [ [0.01 1.0]' [-1.0 0.01]']

b= [1 1]'

r=a^(-1) * b

x=[0 0];

m21=a(2,1)/a(1,1);

a(2,1)=0;

a(2,2) = radd(a(2,2),-m21*a(1,2),n);

b(2)   = radd(b(2),-m21*b(1),n);

x(2)   = b(2)/a(2,2);

x(1)   = (radd(b(1), -a(1,2)*x(2),n))/a(1,1);

x'

tbt.m

Relatively 

close to zero
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Gauss Elimination: Pivoting Example 
(for division by zero but also reduces round-off errors)

Example, n=2

Cramer’s Rule - Exact

Partial Pivoting

Interchange Rows 

2-digit Arithmetic

1% error

1% error

Notes on coding: 

• Pivoting can be done in function/subroutine

• Most codes don’t exchange rows, but rather keep track of pivot rows 

(store info in “pointer” vector)

See 

tbt2.m
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Gauss Elimination: Equation Scaling Example

(normalizes determinant, also reduces round-off errors)

Example, n=2

Cramer’s Rule - Exact

Multiply Equation 1 by 200:

this solves division by 0, but eqns. not scaled anymore!

2-digit Arithmetic

1% error

100% error

Row-based Infinity-norm NormalizationEquations must be normalized for 

partial pivoting to ensure stability

This Equilibration is made by 

normalizing the matrix to unit norm

Row-based 2-norm Normalization

See 

tbt3.m
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Examples of Matrix Norms

“Maximum Column Sum”

“Maximum Row Sum”

“The Frobenius norm” (also called Euclidean 

norm)”, which for matrices differs from:

“The l-2 norm” (also called spectral norm)



PFJL  Lecture 5,    19Numerical Fluid Mechanics2.29

Example, n=2

Cramer’s Rule - Exact

Interchange Unknowns

2-digit Arithmetic

1% error

Pivoting searches both rows and columns 

Full Pivoting

Find largest numerical value in eligible rows and columns, and interchange

Affects ordering of unknowns (hence rarely done)

Gauss Elimination: Full Pivoting Example

(also reduces round-off errors)

Start from system where 

eq. 1 multiplied by 200:
pivot chosen 

within each row, 

across all columns 
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• Partial Pivoting

– Equilibrate system of equations (Normalize or scale variables)

– Pivoting within columns

– Simple book-keeping

• Solution vector in original order

• Full Pivoting

– Does not necessarily require equilibration

– Pivoting within both row and columns

– More complex book-keeping 

• Solution vector re-ordered

Gauss Elimination

Numerical Stability

Partial Pivoting is simplest and most common

Neither method guarantees stability due to large number 

of recursive computations (round-off error) 
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Gauss Elimination: 

Effect of variable transform (variable scaling)

Example, n=2

Cramer’s Rule - Exact

Variable Transformation

2-digit Arithmetic
1% error

100% error

See 

tbt4.m
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• System of equations must be well conditioned

– Investigate condition number

• Tricky, because it can require matrix inversion (as we will see)

– Consistent with physics

• e.g. don’t couple domains that are physically uncoupled

– Consistent units

• e.g. don’t mix meter and mm in unknowns

– Dimensionless unknowns

• Normalize all unknowns consistently

• Equilibration and Partial Pivoting, or Full Pivoting

Systems of Linear Equations

Gauss Elimination

How to Ensure Numerical Stability
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Special Applications of Gauss Elimination

• Complex Systems

– Replace all numbers by complex ones, or,

– Re-write system of n complex equations into 2n real equations

• Nonlinear Systems of equations

– Newton-Raphson: 1st order term kept, use 1st order derivatives 

– Secant Method: Replace 1st order derivatives with finite-difference

– In both cases, at each iteration, this leads to a linear system, which can be solved 

by Gauss Elimination (if full system)

• Gauss-Jordan: variation of Gauss Elimination

– Elimination

• Eliminates each unknown completely (both below and above the pivot row) at each step

• Normalizes all rows by their pivot

– Elimination leads to diagonal unitary matrix (identity): no back-substitution needed

– Number of Ops: about 50% more expensive than Gauss Elimination (n3/2 vs. n3/3

multiplications/divisions)
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Gauss Elimination: Multiple Right-hand Sides

Total Computation Count = ?

Reduction: Nr 

Back Substitution: Nb

If n >> p,  we expect Nr >> Nb

But, if n ~ p ?      (next slide)

k pn-k

Reduction

Step k

n

k

X is a [n x p] matrix

. X=

A X = B
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Gauss Elimination: Multiple Right-hand Sides

Number of Ops

:  n-k divisions

:  2 (n-k) (n-k+1) additions/multiplications

:  2 (n-k) p additions/multiplication

For reduction, the number of ops is: 
1

1

2
3 2

(2 1)( ) 2( )*( 1)

( 1) 2 ( 1)
(2 1) ( )

2 3

n

k
p n k n k n k

n n n np O n pn





      

 
   



Back-Substitution

:  p * ( (n-k-1)+(n-k)+2 )= p * ( 2(n-k) +1 ) add./mul./div. 

1
2

1

2( ) 1 ( 1)( 1)
n

k
p p n k p p n n p n





       Number of ops for back-substitution:
(the first p before the sum is for the 

evaluations of the p xn’s)

Grand total number of ops is                       :   note, extra reduction/elimination only for RHS
3 2( )O n p n

Reduction/Elimination: Step k

p equations as this one
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i. Repeating reduction/elimination of A for each RHS would be inefficient if p >>> 

ii. However, if RHS is result of iterations and unknown a priori, it may seem one 

needs to redo the Reduction each time

A x1 = b1,   A x2 = b2, etc, where vector b2 is a function of x1, etc

=> LU Factorization / Decomposition of A

k pn-k

Reduction

at end of step k

n

k

Gauss Elimination: Multiple Right-hand Sides

Number of Ops, Cont’d
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