2.29 Numerical Fluid Mechanics Spring 2015 - Lecture 5

Review of Lecture 4

- Roots of nonlinear equations

Reference: Chapra and Canale, Chapters 5 and 6

- Bracketing Methods
- Example: Heron's formula
- Bisection and False Position
- "Open" Methods
- Fixed-point Iteration (General method or Picard Iteration)
- Examples, Convergence Criteria
- Order of Convergence

$$
\lim _{n \rightarrow \infty} \frac{\left|e_{n+1}\right|}{\left|e_{n}\right|^{p}}=C
$$

$$
\begin{aligned}
& x_{n+1}=g\left(x_{n}\right) \quad \text { or } \\
& x_{n+1}=x_{n}-h\left(x_{n}\right) f\left(x_{n}\right)
\end{aligned}
$$

- Newton-Raphson
- Convergence speed and examples $\quad x_{n+1}=x_{n}-\frac{1}{f^{\prime}\left(x_{n}\right)} f\left(x_{n}\right)$
- Secant Method
- Examples, Convergence and efficiency
- Extension of Newton-Raphson to systems of nonlinear equations
- Roots of Polynomial (all real/complex roots)
- Open methods (applications of the above for complex numbers) and Special Methods (e.g. Muller's and Bairstow's methods)
- Systems of Linear Equations
- Motivations and Plans

TODAY's Lecture: Systems of Linear Equations

Direct Methods

- Cramer's Rule
- Gauss Elimination
- Algorithm
- Numerical implementation and stability
- Partial Pivoting
- Equilibration
- Full Pivoting
- Well suited for dense matrices
- Issues: round-off, cost, does not vectorize/parallelize well
- Special cases, Multiple right hand sides, Operation count
- LU decomposition/factorization
- Error Analysis for Linear Systems
- Condition Number
- Special Matrices: Tri-diagonal systems
- Iterative Methods
- Jacobi's method
- Gauss-Seidel iteration
2.29 - Convergence

Reading Assignment

- Chapters 9 and 10 of "Chapra and Canale, Numerical Methods for Engineers, 2006/2010/204."
- Any chapter on "Solving linear systems of equations" in references on CFD that we provided. For example: chapter 5 of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, $3^{\text {rd }}$ edition, 2002"

Direct Methods for Small Systems: Determinants and Cramer's Rule

Linear System of Equations:

$$
\begin{array}{cccccc}
a_{11} x_{1} & a_{12} x_{2} & \cdot & \cdot & a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1} & a_{22} x_{2} & \cdot & \cdot & a_{2 n} x_{n} & =b_{2} \\
\cdot & \cdot & \cdot & \cdot & \cdot & = \\
\cdot & \cdot & \cdot & \cdot & \cdot & = \\
a_{n 1} x_{1} & \cdot & \cdot & \cdot & a_{n n} x_{n} & =b_{n}
\end{array}
$$

Recall, for a 2 by 2 matrix, the determinant is: $\quad D=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}$
Recall, for a 3 by 3 matrix, the determinant is:

$$
D=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

Direct Methods for small systems: Determinants and Cramer's Rule

Cramer's rule:

"Each unknown x_{i} in a system of linear algebraic equations can be expressed as a fraction of two determinants:

- Denominator is determinant D
- Numerator is D but with column i replaced by \boldsymbol{b} "
ns $x_{i}=\frac{\left|\begin{array}{ccc} & \mathrm{i}^{\text {it }} \text { column } \\ a_{11} & b_{1} & a_{1 n} \\ b_{2} & \\ a_{n 1} & b_{n} & a_{n n}\end{array}\right|}{D}$

Example: Cramer's Rule, n=2

$$
\begin{aligned}
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \begin{aligned}
D & =a_{11} a_{22}-a_{21} a_{12} \\
D_{1} & =b_{1} a_{22}-b_{2} a_{12} \\
D_{2} & =b_{2} a_{11}-b_{1} a_{21} \\
x_{1} & =\frac{D_{1}}{D}=\frac{b_{1} a_{22}-b_{2} a_{12}}{a_{11} a_{22}-a_{21} a_{12}} \\
x_{2} & =\frac{D_{2}}{D}=\frac{b_{2} a_{11}-b_{1} a_{21}}{a_{11} a_{22}-a_{21} a_{12}}
\end{aligned} . \begin{aligned}
\end{aligned}{ }^{2}=1
\end{aligned}
$$

Numerical case:

$$
\begin{aligned}
& \text { Imerical case: }\left[\begin{array}{cc}
0.01 & -1.0 \\
1.0 & 0.01
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{l}
1.0 \\
1.0
\end{array}\right\} \\
& \qquad x_{1}=\frac{1.0 \cdot 0.01-1.0 \cdot(-1.0)}{0.01 \cdot 0.01-1.0 \cdot(-1.0)}=1.0099 \\
& \qquad x_{2}=\frac{1.0 \cdot 0.01-1.0 \cdot 1.0}{0.01 \cdot 0.01-1.0 \cdot(-1.0)}=-0.9899 \\
& \text { Cramer's rule becomes impractical for } \mathrm{n}>3 \text { : } \\
& \text { The number of operations is of } O(\mathrm{n}!)
\end{aligned}
$$

Direct Methods for large dense systems Gauss Elimination

- Main idea: "combine equations so as to eliminate unknowns systematically"
- Solve for each unknown one by one
- Back-substitute result in the original equations
- Continue with the remaining unknowns

Linear System of Equations

- General Gauss Elimination Algorithm
i. Forward Elimination/Reduction to Upper Triangular Systems)
ii. Back-Substitution

$$
\begin{aligned}
& a_{11} x_{1} \quad a_{12} x_{2} \cdot a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1} \quad a_{22} x_{2} \cdot a_{2 n} x_{n}=b_{2} \\
& \begin{array}{llll}
. & \cdot & . & \text {. } \\
. & . & . & =
\end{array} \\
& a_{n 1} x_{1} \quad \cdot \quad \cdot \quad a_{n n} x_{n}=b_{n}
\end{aligned}
$$

- Comments:
- Well suited for dense matrices
- Some modification of above simple algorithm needed to avoid division by zero and other pitfalls

Gauss Elimination

Linear System of Equations

$$
\begin{array}{cccccc}
a_{11} x_{1} & a_{12} x_{2} & \cdot & \cdot a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1} & a_{22} x_{2} & \cdot & \cdot a_{2 n} x_{n} & =b_{2} \\
\cdot & \cdot & \cdot & \cdot & \cdot & = \\
\cdot & \cdot & \cdot & \cdot & \cdot & = \\
a_{n 1} x_{1} & \cdot & \cdot & \cdot & a_{n n} x_{n} & =b_{n}
\end{array}
$$

Reduction / Forward Elimination Step 0

$$
a_{i j}^{(1)}=a_{i j}, \quad b_{i}^{(1)}=b_{i}
$$

$$
a_{11}^{(1)} x_{1} \quad a_{12}^{(1)} x_{2} \cdot \cdot a_{1 n}^{(1)} x_{n}=b_{1}^{(1)}
$$

$$
a_{21}^{(1)} x_{1} \quad a_{22}^{(1)} x_{2} \cdot \cdot a_{2 n}^{(1)} x_{n}=b_{2}^{(1)}
$$

.

$$
a_{n 1}^{(1)} x_{1} \quad \cdot \quad \cdot \cdot a_{n n}^{(1)} x_{n}=b_{n}^{(1)}
$$

If a_{11} is non zero, we can eliminate x_{1} from the remaining equations 2 to $(n-1)$ by multiplying equation 1 with $\frac{a_{i 1}}{a_{11}}$ and subtracting the result from equation i. This leads to the following algorithm for "Step 1":

Gauss Elimination

Reduction / Forward Elimination: Step 1

$$
\left.\begin{array}{rl}
m_{i 1} & =\frac{a_{i 1}^{(1)}}{a_{11}^{(1)}} \\
a_{i j}^{(2)} & =a_{i j}^{(1)}-m_{i 1} a_{1 j}^{(1)}, \quad j=1, \cdots n \\
b_{i}^{(2)} & =b_{i}^{(1)}-m_{i 1} b_{1}^{(1)}
\end{array}\right\} i=2, \cdots n
$$

Gauss Elimination

Reduction: Step k

$\left.\begin{array}{lll}\text { Recursive repetition of step } 1 & m_{i k} & =\frac{a_{i(k)}^{(k)}}{a_{k k}^{(k)}} \\ \text { for successively reduced set } & a_{i j}^{(k+1)} & =a_{i j}^{(k)}-m_{i k} a_{k j}^{(k)}, j=k, \cdots n \\ \text { of (n-k) equations: } & b_{i}^{(k+1)} & =b_{i}^{(k)}-m_{i k} b_{k}^{(k)}\end{array}\right\} i=k+1, \cdots n$

The result after completion of step k is:

First non-zero element on row $\mathrm{n}: a_{n, k+1}^{(k+1)} x_{k}$

Gauss Elimination

Reduction/Elimination: Step k

$m_{i k}$
$=\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}}$
$a_{i j}^{(k+1)}$
$=a_{i j}^{(k)}-m_{i k} a_{k j}^{(k)}, \quad j=k, \cdots n$
$b_{i}^{(k+1)}$

Reduction: Step (n-1)

Back-Substitution

Result after step ($\mathrm{n}-1$) is an Upper triangular system!

$$
x_{1}=\left(b_{1}^{(1)}-\sum_{j=2}^{n} a_{1 j}^{(1)} x_{j}\right) / a_{11}^{(1)}
$$

Gauss Elimination: Number of Operations

Reduction/Elimination: Step k
$\left.\begin{array}{l}m_{i k}=\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}} \\ a_{i j}^{(k+1)}=a_{i j}^{(k)}-m_{i k} a_{k j}^{(k)}, \quad j=k, \cdots n \\ b_{i}^{(k+1)}=b_{i}^{(k)}-m_{i k} b_{k}^{(k)}\end{array}\right\} i=k+1, \cdots n$
: n-k divisions
: 2 (n-k) (n-k+1) additions/multiplications
: 2 (n-k) additions/multiplications

For reduc., total number of ops: $\sum_{k=1}^{n-1} 3(n-k)+2(n-k)(n-k+1)=\frac{3 n(n-1)}{2}+\frac{2 n\left(n^{2}-1\right)}{3}=O\left(\frac{2}{3} n^{3}\right)$

Back-Substitution

Use: $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ and $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$

$$
x_{k}=\left(b_{k}^{(k)}-\sum_{j=k+1}^{n} a_{k j}^{(k)} x_{j}\right) / a_{k k}^{(k)}:(\mathrm{n}-\mathrm{k}-1)+(\mathrm{n}-\mathrm{k})+2=2(\mathrm{n}-\mathrm{k})+1 \text { additions/multiplications }
$$

Hence, total number of ops is: $1+\sum_{k=1}^{n-1}(2(n-k)+1)=1+(n-1)(n+1)=n^{2} \quad\left(\sum_{i=1}^{n} i=\frac{n(n+1)}{2}\right)$
(the first 1 before the sum is for $\left.x_{n}\right)$ Grand total number of ops is $O\left(\frac{2}{3} n^{3}\right)=O\left(n^{3}\right)$: • Grows rapidly with n

- Most ops occur in elimination step

Gauss Elimination: Issues and Pitfalls to be addressed

- Division by zero:
- Pivot elements $a_{k, k}^{(k)}$ must be non-zero and should not be close to zero
- Round-off errors
- Due to recursive computations and so error propagation
- Important when large number of equations are solved
- Always substitute solution found back into original equations
- Scaling of variables can be used
- III-conditioned systems
- Occurs when one or more equations are nearly identical
- If determinant of normalized system matrix \mathbf{A} is close to zero, system will be ill-conditioned (in general, if \mathbf{A} is not well conditioned)
- Determinant can be computed using Gauss Elimination
- Since forward-elimination consists of simple scaling and addition of equations, the determinant is the product of diagonal elements of the Upper Triangular System

Gauss Elimination: Pivoting

Reduction
Step k

Pivot Elements

$$
a_{11}^{(1)}, a_{22}^{(2)}, \ldots, a_{n n}^{(n)}
$$

Required at each step!

$$
a_{k k}^{(k)} \neq 0
$$

Partial Pivoting by Columns

Gauss Elimination: Pivoting

A. Partial Pivoting

Two Solutions:

i. Search for largest available coefficient in column below pivot element
ii. Switch rows k and i
B. Complete Pivoting
i. As for Partial, but search both rows and columns
ii. Rarely done since column re-ordering changes order of x's, hence more complex code

Gauss Elimination: Pivoting Example (for division by zero but also reduces round-off errors)

$$
x=\left[\begin{array}{ll}
0 & 0
\end{array}\right]
$$

$$
\mathrm{m} 21=\mathrm{a}(2,1) / \mathrm{a}(1,1) ;
$$

$$
a(2,1)=0 ;
$$

$$
a(2,2)=\operatorname{radd}(a(2,2),-m 21 * a(1,2), n)
$$

$$
\mathrm{b}(2)=\operatorname{radd}(\mathrm{b}(2),-\mathrm{m} 21 * \mathrm{~b}(1), \mathrm{n}) ;
$$

$$
\mathrm{x}(2)=\mathrm{b}(2) / \mathrm{a}(2,2) ;
$$

$$
x(1)=(\operatorname{radd}(b(1),-a(1,2) * x(2), n)) / a(1,1) ;
$$

$$
x^{\prime}
$$

$$
\begin{aligned}
& \text { Example, n=2 } \\
& {\left[\begin{array}{cc}
0.01 & -1.0 \\
1.0 & 0.01
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{l}
1.0 \\
1.0
\end{array}\right\}} \\
& \text { Cramer's Rule - Exact } \\
& \begin{array}{l}
x_{1}=\frac{1.0 \cdot 0.01-1.0 \cdot(-1.0)}{0.01 \cdot 0.01-1.0 \cdot(-1.0)}=1.0099 \\
x_{2}=\frac{1.0 \cdot 0.01-1.0 \cdot 1.0}{0.01 \cdot 0.01-1.0 \cdot(-1.0)}=-0.9899
\end{array} \\
& \mathrm{n}=2 \\
& \left.a=\left[\begin{array}{lll}
{[0.01} & 1.0
\end{array}\right]^{\prime}[-1.0 \quad 0.01]^{\prime}\right] \quad \text { tbt.m } \\
& \mathrm{b}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]^{\prime} \\
& r=a^{\wedge}(-1) * b
\end{aligned}
$$

Gauss Elimination: Pivoting Example (for division by zero but also reduces round-off errors)

Partial Pivoting
Interchange Rows

Notes on coding:

- Pivoting can be done in function/subroutine
- Most codes don't exchange rows, but rather keep track of pivot rows (store info in "pointer" vector)

Gauss Elimination: Equation Scaling Example (normalizes determinant, also reduces round-off errors)

Multiply Equation 1 by 200:
this solves division by 0 , but eqns. not scaled anymore!

$$
\begin{aligned}
& \text { Example, } \mathrm{n}=2 \\
& {\left[\begin{array}{cc}
0.01 & -1.0 \\
1.0 & 0.01
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{l}
1.0 \\
1.0
\end{array}\right\}} \\
& \text { Cramer's Rule - Exact } \\
& x_{1}=\frac{1.000 .01-1.0 \cdot(-1.0)}{0.01 \cdot 0.01-1.0 \cdot(-1.0)}=1.0099 \\
& x_{2}=\frac{1.0 \cdot 0.01-1.0 \cdot 1.0}{0.01 \cdot 0.01-1.0 \cdot(-1.0)}=-0.9899 \\
& \text { Equations must be normalized for } \\
& \text { partial pivoting to ensure stability } \\
& \text { This Equilibration is made by } \\
& \text { normalizing the matrix to unit norm } \\
& {\left[\begin{array}{cc}
2.0 & -200 \\
1.0 & 0.01
\end{array}\right]\left\{\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{c}
200.0 \\
1.0
\end{array}\right\} \Rightarrow\left\{\begin{array}{lr}
x_{1}= & 1.01 \\
x_{2}= & -0.99
\end{array}\right.} \\
& \text { 2-digit Arithmetic } \\
& m_{21}=0.5 \\
& a_{21}^{(2)}=0 \\
& \text { See } \\
& \text { tbt3.m }
\end{aligned}
$$

Examples of Matrix Norms

$$
\begin{aligned}
& \|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|a_{i j}\right| \\
& \|A\|_{\infty}=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|\alpha_{i j}\right| \\
& \|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2} \\
& \|A\|_{2}=\sqrt{\lambda_{\max }\left(A^{*} A\right)}
\end{aligned}
$$

"Maximum Column Sum"

"Maximum Row Sum"
"The Frobenius norm" (also called Euclidean norm)", which for matrices differs from:
"The l-2 norm" (also called spectral norm)

Gauss Elimination: Full Pivoting Example (also reduces round-off errors)

Pivoting searches both rows and columns Interchange Unknowns

Start from system where eq. 1 multiplied by 200:
pivot chosen within each row,
Example, $n=2$ across all columns

$$
\begin{aligned}
& x_{1}=\tilde{x}_{2} \\
& x_{2}=\tilde{x}_{1}
\end{aligned}
$$

$$
\left[\begin{array}{cc}
2.0 & -200 \\
1.0 & 0.01
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{c}
200.0 \\
1.0
\end{array}\right\}
$$

Cramer's Rule - Exact
$x_{1}=\frac{1.0 \cdot 0.01-1.0 \cdot(-1.0)}{0.01 \cdot 0.01-1.0 \cdot(-1.0)}=1.0099$
$x_{2}=\frac{1.0 \cdot 0.01-1.0 \cdot 1.0}{0.01 \cdot 0.01-1.0 \cdot(-1.0)}=-0.9899$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-200 & 2.0 \\
0.01 & 1.0
\end{array}\right] }\left\{\begin{array}{l}
\tilde{x}_{1} \\
\tilde{x}_{2}
\end{array}\right\}=\left\{\begin{array}{c}
200.0 \\
1.0
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
\tilde{x}_{1}= \\
\tilde{x}_{2}= \\
\text { 2-digit Arithmetic }
\end{array}\right. \\
& \begin{aligned}
m_{21} & =-0.99
\end{aligned} \\
& \begin{aligned}
a_{21}^{(2)} & =0 \\
a_{22}^{(2)} & =0.01+1.0 \simeq 1.0 \\
b_{2}^{(2)} & =1+0005 \simeq 1 \\
\tilde{x}_{2} & \simeq 1 \\
\tilde{x}_{1} & =(200-2) /(-200) \simeq-1
\end{aligned}
\end{aligned}
$$

Full Pivoting

Find largest numerical value in eligible rows and columns, and interchange Affects ordering of unknowns (hence rarely done)

Gauss Elimination

Numerical Stability

- Partial Pivoting
- Equilibrate system of equations (Normalize or scale variables)
- Pivoting within columns
- Simple book-keeping
- Solution vector in original order
- Full Pivoting
- Does not necessarily require equilibration
- Pivoting within both row and columns
- More complex book-keeping
- Solution vector re-ordered

Partial Pivoting is simplest and most common
Neither method guarantees stability due to large number of recursive computations (round-off error)

Gauss Elimination:

Effect of variable transform (variable scaling)

Variable Transformation

Example, n=2

$$
\begin{array}{lc}
x_{1}=\tilde{x}_{1} & \text { See } \\
x_{2}=0.01 \cdot \tilde{x}_{2} & \text { tbt4.m }
\end{array}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
0.01 & -1.0 \\
1.0 & 0.01
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{l}
1.0 \\
1.0
\end{array}\right\}} \\
& \text { Cramer's Rule - Exact } \\
& x_{1}=\frac{1.0 \cdot 0.01-1.0 \cdot(-1.0)}{0.01 \cdot 0.01-1.0 \cdot(-1.0)}=1.0099 \\
& x_{2}=\frac{1.0 \cdot 0.01-1.0 \cdot 1.0}{0.01 \cdot 0.01-1.0 \cdot(-1.0)}=-0.9899
\end{aligned}
$$

$$
\begin{gathered}
{\left[\begin{array}{cc}
1.0 & -1.0 \\
1.0 & 0.0001
\end{array}\right]\left\{\begin{array}{l}
\tilde{x}_{1} \\
\tilde{x}_{2}
\end{array}\right\}=\left\{\begin{array}{c}
100.0 \\
1.0
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\tilde{x}_{1}=1.01 \\
\tilde{x}_{2}=-99
\end{array}\right\}} \\
\text { 2-digit Arithmetic } \\
\begin{aligned}
m_{21} & =1 \% \text { error } \\
a_{21}^{(2)} & =0 \\
a_{22}^{(2)} & =0.0001+1.0 \simeq 1.0 \\
b_{2}^{(2)} & =1-_00 \simeq-100 \\
\tilde{x}_{2} & =-100 \\
\tilde{x}_{1} & =100-100=0
\end{aligned}
\end{gathered}
$$

Systems of Linear Equations Gauss Elimination

How to Ensure Numerical Stability

- System of equations must be well conditioned
- Investigate condition number
- Tricky, because it can require matrix inversion (as we will see)
- Consistent with physics
- e.g. don't couple domains that are physically uncoupled
- Consistent units
- e.g. don't mix meter and $\mu \mathrm{m}$ in unknowns
- Dimensionless unknowns
- Normalize all unknowns consistently
- Equilibration and Partial Pivoting, or Full Pivoting

Special Applications of Gauss Elimination

- Complex Systems

- Replace all numbers by complex ones, or,
- Re-write system of n complex equations into $2 n$ real equations

- Nonlinear Systems of equations

- Newton-Raphson: $1^{\text {st }}$ order term kept, use $1^{\text {st }}$ order derivatives
- Secant Method: Replace $1^{\text {st }}$ order derivatives with finite-difference
- In both cases, at each iteration, this leads to a linear system, which can be solved by Gauss Elimination (if full system)
- Gauss-Jordan: variation of Gauss Elimination
- Elimination
- Eliminates each unknown completely (both below and above the pivot row) at each step
- Normalizes all rows by their pivot
- Elimination leads to diagonal unitary matrix (identity): no back-substitution needed
- Number of Ops: about 50% more expensive than Gauss Elimination ($n^{3} / 2$ vs. $n^{3} / 3$ multiplications/divisions)

Gauss Elimination: Multiple Right-hand Sides

AX $=\mathbf{B}$

Reduction

Total Computation Count $=$?
Reduction: Nr
Back Substitution: Nb
If $n \gg p$, we expect $\mathrm{Nr} \gg \mathrm{Nb}$
But, if $n \sim p$? (next slide)

Gauss Elimination: Multiple Right-hand Sides Number of Ops

Reduction/Elimination: Step k

$m_{i k}$
$=\frac{a_{i(k)}^{(k)}}{a_{k k}^{(k)}}$
$a_{i j}^{(k+1)}$
$=a_{i j}^{(k)}-m_{i k} a_{k j}^{(k)}, \quad j=k, \cdots n$
$b_{i}^{(k+1)}$

: n-k divisions
: 2 (n-k) (n-k+1) additions/multiplications
: $2(\mathrm{n}-\mathrm{k}) \mathrm{p}$ additions/multiplication
p equations as this one
For reduction, the number of ops is: $\sum_{k=1}^{n-1}(2 \underline{p}+1)(n-k)+2(n-k) *(n-k+1)=$

Back-Substitution

$$
\frac{(2 p+1)}{} \frac{n(n-1)}{2}+\frac{2 n\left(n^{2}-1\right)}{3}=O\left(n^{3}+\underline{p} n^{2}\right)
$$

$$
x_{k}=\left(b_{k}^{(k)}-\sum_{j=k+1}^{n} a_{k j}^{(k)} x_{j}\right) / a_{k k}^{(k)}: \mathrm{p}^{*}((\mathrm{n}-\mathrm{k}-1)+(\mathrm{n}-\mathrm{k})+2)=\mathrm{p}^{*}(2(\mathrm{n}-\mathrm{k})+1) \text { add./mul./div. }
$$

Number of ops for back-substitution: $\underline{p}+\underline{p} \sum_{k=1}^{n-1} 2(n-k)+1=\underline{p}+\underline{p}(n-1)(n+1)=\underline{p} n^{2}$ (the first p before the sum is for the evaluations of the $p x_{n \prime s}$)
Grand total number of ops is $O\left(n^{3}+p n^{2}\right)$: note, extra reduction/elimination only for RHS

Gauss Elimination: Multiple Right-hand Sides Number of Ops, Cont'd
 Reduction

at end of step k

i. Repeating reduction/elimination of A for each RHS would be inefficient if p >>>
ii. However, if RHS is result of iterations and unknown a priori, it may seem one needs to redo the Reduction each time
$\mathbf{A} \mathbf{x}_{1}=\mathbf{b}_{1}, \quad \mathbf{A} \mathbf{x}_{2}=\mathbf{b}_{2}$, etc, where vector \mathbf{b}_{2} is a function of \mathbf{x}_{1}, etc
=> LU Factorization / Decomposition of A

MIT OpenCourseWare
http://ocw.mit.edu

2.29 Numerical Fluid Mechanics

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

