

2.29 Numerical Fluid Mechanics Spring 2015 – Lecture 5

 $\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^p} = C$

Review of Lecture 4

- Roots of nonlinear equations
 - Bracketing Methods
 - Example: Heron's formula
 - Bisection and False Position
 - "Open" Methods
 - Fixed-point Iteration (General method or Picard Iteration)
 - Examples, Convergence Criteria
 - Order of Convergence
 - Newton-Raphson
 - Convergence speed and examples

$$x_{n+1} = x_n - \frac{1}{f'(x_n)} f(x_n)$$

 $x_{n+1} = g(x_n) \text{ or}$ $x_{n+1} = x_n - h(x_n)f(x_n)$

Reference: Chapra and Canale,

Chapters 5 and 6

- Secant Method
 - Examples, Convergence and efficiency
- Extension of Newton-Raphson to systems of nonlinear equations
- Roots of Polynomial (all real/complex roots)
 - Open methods (applications of the above for complex numbers) and Special Methods (e.g. Muller's and Bairstow's methods)
- Systems of Linear Equations
 - Motivations and Plans
 - Direct Methods

TODAY's Lecture: Systems of Linear Equations

- **Direct Methods**
 - Cramer's Rule
 - Gauss Elimination
 - Algorithm
 - Numerical implementation and stability
 - Partial Pivoting
 - Equilibration
 - Full Pivoting
 - Well suited for dense matrices
 - Issues: round-off, cost, does not vectorize/parallelize well
 - Special cases, Multiple right hand sides, Operation count
 - LU decomposition/factorization
 - Error Analysis for Linear Systems
 - Condition Number
 - Special Matrices: Tri-diagonal systems
- Iterative Methods
 - Jacobi's method
 - Gauss-Seidel iteration
- 2.29 Convergence

Reading Assignment

- Chapters 9 and 10 of "Chapra and Canale, Numerical Methods for Engineers, 2006/2010/204."
 - Any chapter on "Solving linear systems of equations" in references on CFD that we provided. For example: chapter 5 of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, 3rd edition, 2002"

 \cdot \cdot \cdot \cdot = \cdot $a_{n1}x_1 \quad \cdot \quad \cdot \quad \cdot \quad a_{nn}x_n = b_n$

Recall, for a 2 by 2 matrix, the determinant is:

$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} a_{22} - a_{21} a_{12}$$

Recall, for a 3 by 3 matrix, the determinant is:

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Direct Methods for small systems: **Determinants and Cramer's Rule**

Cramer's rule:

"Each unknown x_i in a system of linear algebraic equation can be expressed as a fraction of two determinants:

• Denominator is determinant D

mala, Cramar'a Dula, n-0

• Numerator is D but with column i replaced by b"

ns
$$\begin{vmatrix} a_{11} & b_1 & a_{1n} \\ b_2 & & \\ a_{n1} & b_2 & \\ a_{n1} & b_n & a_{nn} \end{vmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{array}{l} D = a_{11}a_{22} - a_{21}a_{12} \\ D_1 = b_1a_{22} - b_2a_{12} \\ D_2 = b_2a_{11} - b_1a_{21} \\ x_1 = \frac{D_1}{D} = \frac{b_1a_{22} - b_2a_{12}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{22} - a_{21}a_{12}} \\ x_2 = \frac{D_2}{D} = \frac{b_2a_{11} - b_1a_{21}}{a_{11}a_{2$$

Numerical access

Numerical Fluid Mechanics

Direct Methods for large dense systems Gauss Elimination

- Main idea: "combine equations so as to eliminate unknowns systematically"
 - Solve for each unknown one by one
 - Back-substitute result in the original equations
 - Continue with the remaining unknowns
- General Gauss Elimination Algorithm
 - i. Forward Elimination/Reduction to Upper Triangular Systems)
 - ii. Back-Substitution
- Comments:
 - Well suited for dense matrices
 - Some modification of above simple algorithm needed to avoid division by zero and other pitfalls

Linear System of Equations

$a_{11}x_1$	$a_{12}x_2$	•	•	$a_{1n}x_n$	=	b_1
$a_{21}x_1$	$a_{22}x_2$			$a_{2n}x_n$	=	b_2
•	•			•	=	
					=	•
						1

 $a_{n1}x_1 \quad \cdot \quad \cdot \quad a_{nn}x_n = b_n$

Reduction / Forward Elimination

Linear System of Equations					tion	Step 0	Step 0			
$a_{11}x_1$	$a_{12}x_2$		· a	$x_{1n}x_n$	=	b_1	$a_{ij}^{(1)}=a_{ij}, \;\; b_i^{(1)}=b_i$			
$a_{21}x_1$.	$a_{22}x_2$.		• a •	$\dot{x}_{2n}x_n$	=	b_2 .	$a_{11}^{(1)}x_1 a_{12}^{(1)}x_2 \cdot \cdot a_{1n}^{(1)}x_n = b_1^{(1)}$			
			•		=		$a_{21}^{(1)}x_1 a_{22}^{(1)}x_2 \cdot \cdot a_{2n}^{(1)}x_n = b_2^{(1)}$			
$a_{n1}x_1$			· a	$x_{nn}x_n$	=	b_n	\cdot \cdot \cdot \cdot \cdot $=$ \cdot			
							\cdot \cdot \cdot \cdot \cdot $=$ \cdot			
							$a_{n1}^{(1)}x_1$ \cdot \cdot \cdot $a_{nn}^{(1)}x_n$ = $b_n^{(1)}$			

If a_{11} is non zero, we can eliminate x_1 from the remaining equations 2 to (*n*-1) by multiplying equation 1 with $\frac{a_{i1}}{a_{11}}$ and subtracting the result from equation *i*. This leads to the following algorithm for "Step 1":

Reduction / Forward Elimination: Step 1

Reduction: Step k

Recursive repetition of step 1 for successively reduced set of (n-k) equations:

The result after completion of step k is:

$$m_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} \\ a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik}a_{kj}^{(k)}, \quad j = k, \dots n \\ b_i^{(k+1)} = b_i^{(k)} - m_{ik}b_k^{(k)}$$

Reduction/Elimination: Step k

$$\begin{array}{ll} m_{ik} &=& \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} \\ a_{ij}^{(k+1)} &=& a_{ij}^{(k)} - m_{ik} a_{kj}^{(k)}, \ \ j = k, \cdots n \\ b_i^{(k+1)} &=& b_i^{(k)} - m_{ik} b_k^{(k)} \end{array} \right\} \ i = k+1, \cdots n$$

Reduction: Step (n-1)

Back-Substitution

 $x_1 \;=\; \left(b_1^{(1)} - \sum_{i=2}^n a_{1j}^{(1)} x_j
ight) / a_{11}^{(1)}$

Result after step (n-1) is an Upper triangular system!

Gauss Elimination: Number of Operations

Reduction/Elimination: Step k

$$\begin{array}{l} m_{ik} &= \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} \\ a_{ij}^{(k+1)} &= a_{ij}^{(k)} - m_{ik}a_{kj}^{(k)}, \ \ j = k, \cdots n \\ b_i^{(k+1)} &= b_i^{(k)} - m_{ik}b_k^{(k)} \end{array} \right\} \ i = k+1, \cdots n$$

: n-k divisions

: 2 (n-k) (n-k+1) additions/multiplications

6

: 2 (n-k) additions/multiplications

For reduc., total number of ops:
$$\sum_{k=1}^{n-1} 3(n-k) + 2(n-k) (n-k+1) = \frac{3n(n-1)}{2} + \frac{2n(n^2-1)}{3} = O(\frac{2}{3}n^3)$$

Use:
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \text{ and } \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Back-Substitution

$$x_k = \left(b_k^{(k)} - \sum_{j=k+1}^n a_{kj}^{(k)} x_j \right) / a_{kk}^{(k)}$$
 : (n-k-1)+(n-k)+2=2(n-k) +1 additions/multiplications

Hence, total number of ops is: $1 + \sum_{i=1}^{n-1} (2(n-k)+1) = 1 + (n-1)(n+1) = n^2$ $(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ (the first 1 before the sum is for x_n)

Grand total number of ops is $O(\frac{2}{3}n^3) = O(n^3)$: • Grows rapidly with n Most ops occur in elimination step

Gauss Elimination: Issues and Pitfalls to be addressed

- Division by zero:
 - Pivot elements $a_{k,k}^{(k)}$ must be non-zero and should not be close to zero
- Round-off errors
 - Due to recursive computations and so error propagation
 - Important when large number of equations are solved
 - Always substitute solution found back into original equations
 - Scaling of variables can be used
- Ill-conditioned systems
 - Occurs when one or more equations are nearly identical
 - If determinant of normalized system matrix A is close to zero, system will be ill-conditioned (in general, if A is not well conditioned)
 - Determinant can be computed using Gauss Elimination
 - Since forward-elimination consists of simple scaling and addition of equations, the determinant is the product of diagonal elements of the Upper Triangular System

Gauss Elimination: Pivoting

Gauss Elimination: Pivoting

A. Partial Pivoting

Two Solutions:

- i. Search for largest available coefficient in column below pivot element
- ii. Switch rows k and i

B. Complete Pivoting

- i. As for Partial, but search both rows and columns
- ii. Rarely done since column re-ordering changes order of x's, hence more complex code

Gauss Elimination: Pivoting Example (for division by zero but also reduces round-off errors)

Gauss Elimination: Pivoting Example (for division by zero but also reduces round-off errors)

Partial Pivoting Interchange Rows

Example, n=2

$$\begin{bmatrix} 0.01 & -1.0 \\ 1.0 & 0.01 \end{bmatrix} \begin{cases} x_1 \\ x_2 \end{cases} = \begin{cases} 1.0 \\ 1.0 \end{cases} \begin{bmatrix} 1.0 & 0.01 \\ 0.01 & -1.0 \end{bmatrix} \begin{cases} x_1 \\ x_2 \end{cases} = \begin{cases} 1.0 \\ 1.0 \end{cases}$$
2-digit Arithmetic
m₂₁ = 0.01
Cramer's Rule - Exact
 $x_1 = \frac{1.0 \cdot 0.01 - 1.0 \cdot (-1.0)}{0.01 \cdot 0.01 - 1.0 \cdot (-1.0)} = 1.0099 \xleftarrow{1\% \text{ error } a_{22}^{(2)}} = -1 - 0.0001 \simeq -1.0$
 $x_2 = \frac{1.0 \cdot 0.01 - 1.0 \cdot (-1.0)}{0.01 \cdot 0.01 - 1.0 \cdot (-1.0)} = -0.9899 \xleftarrow{1\% \text{ error } x_2 \simeq -1} \\ 1\% \text{ error } x_1 = 1 + 0.01 \simeq 1.0 \end{bmatrix}$
See tbt2.m

Notes on coding:

- Pivoting can be done in function/subroutine
- Most codes don't exchange rows, but rather keep track of pivot rows (store info in "pointer" vector)

Gauss Elimination: Equation Scaling Example (normalizes determinant, also reduces round-off errors)

Multiply Equation 1 by 200:
this solves division by 0, but eqns. not scaled anymore!Example, n=2
$$\begin{pmatrix} 2.0 & -200 \\ 1.0 & 0.01 \end{pmatrix} \begin{cases} x_1 \\ x_2 \end{cases} = \begin{cases} 200.0 \\ 1.0 \end{cases} \Rightarrow \begin{cases} x_1 = 1.01 \\ x_2 = -0.99 \end{cases}$$
 $\begin{bmatrix} 0.01 & -1.0 \\ 1.0 & 0.01 \end{bmatrix} \begin{cases} x_1 \\ x_2 \end{cases} = \begin{cases} 1.0 \\ 1.0 \end{cases}$ 2-digit Arithmetic
 $m_{21} = 0.5$
 $a_{21}^{(21)} = 0$ Cramer's Rule - Exact $2^{-1} = 0.5$
 $a_{22}^{(21)} = 0$ See
tbt3.m $x_1 = \frac{1.0 \cdot 0.01 - 1.0 \cdot (-1.0)}{0.01 \cdot 0.01 - 1.0 \cdot (-1.0)} = 1.0099$ Multiply Equation 1 by 200:
this solves division by 0, but eqns. not scaled anymore! $x_2 = \frac{1.0 \cdot 0.01 - 1.0 \cdot (-1.0)}{0.01 \cdot 0.01 - 1.0 \cdot (-1.0)} = -0.9899$ See
tows errorSee
 $a_{22}^{(2)} = 0.01 + 100 \simeq 100$ Equations must be normalized for
partial pivoting to ensure stabilityRow-based Infinity-norm Normalization
 $||a_{ij}||_{\infty} = \max_{j} |a_{ij}| \simeq 1, \quad i = 1, \dots n$ Row-based 2-norm Normalization
 $||a_{ij}||_2 = \sum_{j=1}^n a_{ij}^2 \simeq 1, \quad i = 1, \dots n$

PFJL Lecture 5, 17

Examples of Matrix Norms

$$\begin{split} \|A\|_{1} &= \max_{1 \leq j \leq n} \sum_{i=1}^{m} |a_{ij}| \\ \|A\|_{\infty} &= \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}| \\ \|A\|_{F} &= \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}\right)^{1/2} \\ \|A\|_{2} &= \sqrt{\lambda_{\max}(A^{*}A)} \end{split}$$

"Maximum Column Sum"

"Maximum Row Sum"

"The Frobenius norm" (also called Euclidean norm)", which for matrices differs from:

"The I-2 norm" (also called spectral norm)

Gauss Elimination: Full Pivoting Example (also reduces round-off errors)

Pivoting searches both rows and columns

Full Pivoting

Find largest numerical value in eligible rows and columns, and interchange Affects ordering of unknowns (hence rarely done)

Numerical Fluid Mechanics

Numerical Stability

- Partial Pivoting
 - Equilibrate system of equations (Normalize or scale variables)
 - Pivoting within columns
 - Simple book-keeping
 - Solution vector in original order
- Full Pivoting
 - Does not necessarily require equilibration
 - Pivoting within both row and columns
 - More complex book-keeping
 - Solution vector re-ordered

Partial Pivoting is simplest and most common Neither method guarantees stability due to large number of recursive computations (round-off error)

Gauss Elimination: Effect of variable transform (variable scaling)

Variable Transformation

$$x_1 = \tilde{x}_1$$
 See
 $x_2 = 0.01 \cdot \tilde{x}_2$ tbt4.m

Example, n=2

$$\begin{bmatrix} 0.01 & -1.0 \\ 1.0 & 0.01 \end{bmatrix} \begin{cases} x_1 \\ x_2 \end{cases} = \begin{cases} 1.0 \\ 1.0 \end{cases}$$

Cramer's Rule - Exact

$$\begin{array}{rcl} x_1 &=& \frac{1.0 \cdot 0.01 - 1.0 \cdot (-1.0)}{0.01 \cdot 0.01 - 1.0 \cdot (-1.0)} &=& 1.0099 \\ x_2 &=& \frac{1.0 \cdot 0.01 - 1.0 \cdot 1.0}{0.01 \cdot 0.01 - 1.0 \cdot (-1.0)} &=& -0.9899 \end{array}$$

$$\begin{bmatrix} 1.0 & -1.0 \\ 1.0 & 0.0001 \end{bmatrix} \begin{cases} \tilde{x}_1 \\ \tilde{x}_2 \end{cases} = \begin{cases} 100.0 \\ 1.0 \end{cases} \Rightarrow \begin{cases} \tilde{x}_1 = 1.01 \\ \tilde{x}_2 = -99 \end{cases}$$

$$2 \text{-digit Arithmetic}$$

$$m_{21} = 1.0$$

$$a_{21}^{(2)} = 0$$

$$a_{22}^{(2)} = 0.0001 + 1.0 \simeq 1.0$$

$$b_2^{(2)} = 1 - 2100 \simeq -100$$

$$\tilde{x}_2 = -100$$

$$\tilde{x}_1 = 100 - 100 = 0$$

Systems of Linear Equations Gauss Elimination

How to Ensure Numerical Stability

- System of equations must be well conditioned
 - Investigate condition number
 - Tricky, because it can require matrix inversion (as we will see)
 - Consistent with physics
 - e.g. don't couple domains that are physically uncoupled
 - Consistent units
 - e.g. don't mix meter and μm in unknowns
 - Dimensionless unknowns
 - Normalize all unknowns consistently
- Equilibration and Partial Pivoting, or Full Pivoting

Special Applications of Gauss Elimination

Complex Systems

- Replace all numbers by complex ones, or,
- Re-write system of *n* complex equations into 2*n* real equations
- Nonlinear Systems of equations
 - Newton-Raphson: 1st order term kept, use 1st order derivatives
 - Secant Method: Replace 1st order derivatives with finite-difference
 - In both cases, at each iteration, this leads to a linear system, which can be solved by Gauss Elimination (if full system)
- Gauss-Jordan: variation of Gauss Elimination
 - Elimination
 - Eliminates each unknown completely (both below and above the pivot row) at each step
 - Normalizes all rows by their pivot
 - Elimination leads to diagonal unitary matrix (identity): no back-substitution needed
 - Number of Ops: about 50% more expensive than Gauss Elimination ($n^{3}/2$ vs. $n^{3}/3$ multiplications/divisions)

Gauss Elimination: Multiple Right-hand Sides

Gauss Elimination: Multiple Right-hand Sides Number of Ops

Reduction/Elimination: Step k

$$\begin{array}{ll} m_{ik} &= \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} \\ a_{ij}^{(k+1)} &= a_{ij}^{(k)} - m_{ik}a_{kj}^{(k)}, \ j = k, \cdots n \\ b_i^{(k+1)} &= b_i^{(k)} - m_{ik}b_k^{(k)} \end{array} \right\} \ i = k+1, \cdots n$$

: n-k divisions

: 2 (n-k) (n-k+1) additions/multiplications

: 2 (n-k) p additions/multiplication

p equations as this one

For reduction, the number of ops is:

$$\sum_{k=1}^{n-1} (2\underline{p}+1)(n-k) + 2(n-k)*(n-k+1) =$$

$$\underline{(2p+1)}\frac{n(n-1)}{2} + \frac{2n(n^2-1)}{3} = O(n^3 + \underline{p}n^2)$$

Back-Substitution

$$x_k = \left(b_k^{(k)} - \sum_{j=k+1}^n a_{kj}^{(k)} x_j\right) / a_{kk}^{(k)}$$

:
$$p * ((n-k-1)+(n-k)+2) = p * (2(n-k) + 1) add./mul./div.$$

Number of ops for back-substitution: $\underline{p} + \underline{p} \sum_{k=1}^{n-1} 2(n-k) + 1 = \underline{p} + \underline{p}(n-1)(n+1) = \underline{p}n^2$ (the first *p* before the sum is for the evaluations of the $p x_{n's}$)

Grand total number of ops is $O(n^3 + p n^2)$: note, extra reduction/elimination only for RHS

Gauss Elimination: Multiple Right-hand Sides Number of Ops, Cont'd

- i. Repeating reduction/elimination of A for each RHS would be inefficient if p >>>
- ii. However, if RHS is result of iterations and unknown a priori, it may seem one needs to redo the Reduction each time

 $\mathbf{A} \mathbf{x}_1 = \mathbf{b}_1$, $\mathbf{A} \mathbf{x}_2 = \mathbf{b}_2$, etc, where vector \mathbf{b}_2 is a function of \mathbf{x}_1 , etc

=> LU Factorization / Decomposition of A

MIT OpenCourseWare http://ocw.mit.edu

2.29 Numerical Fluid Mechanics Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.