2.29 Numerical Fluid Mechanics
Spring 2015 — Lecture 6

REVIEW Lecture 5:
Systems of Linear Equations

* Direct Methods for solving Linear Equation Systems
— Determinants and Cramer’s Rule

— Gauss Elimination
 Algorithm
— Forward Elimination/Reduction to Upper Triangular System
— Back-Substitution
— Number of Operations: 0(§n3+n2)+0(n2)

* Numerical implementation and stability
— Partial Pivoting
— Equilibration
— Full pivoting
— Well suited for dense matrices
— lIssues: round-off, cost, does not vectorize/parallelize well

- Special cases, Multiple RHSs, Operation count O(n’ + pn*)+O(pn®)
2.29 Numerical Fluid Mechanics PFJL Lecture 6,



Direct Methods
— Cramer’s Rule
— Gauss Elimination
« Algorithm
* Numerical implementation and stability
— Partial Pivoting
— Equilibration
— Full Pivoting
— Well suited for dense matrices

— Issues: round-off, cost, does not vectorize/parallelize well
» Special cases, Multiple right hand sides, Operation count

— LU decomposition/factorization
— Error Analysis for Linear Systems
— Condition Number
— Special Matrices: Tri-diagonal systems
* lterative Methods
— Jacobi’'s method
— Gauss-Seidel iteration
229 — Convergence Numerical Fluid Mechanics

1) TODAY’s Lecture: Systems of Linear Equations Il
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Reading Assignment

« Chapters 9 and 10 of “Chapra and Canale, Numerical
Methods for Engineers, 2006/2010/204.”

— Any chapter on “Solving linear systems of equations” in references on
CFD that we provided. For example: chapter 5 of “J. H. Ferziger and
M. Peric, Computational Methods for Fluid Dynamics. Springer, NY,
3rd edition, 2002”
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The coefficient Matrix A is decomposed as

A=L-U

where L is a lower triangular matrix

and U_ is an upper triangular matrix

Then the solution is performed in t
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7y  Back substitution

How to determine L and U ?
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LU Decomposition / Factorization
via Gauss Elimination, assuming no pivoting needed

J

—

| VoD a(l) ' Gauss Elimination (GE): iteration eqns.

; 12 E for the reduction at step k are
Aoy, k k k k k
2 a?(j+1)_ U—mmaéj), = ()/a()

This gives the final changes occurring
in reduction steps k=1 to k=i-1

0 - 0ld? - - o)

After reduction step i-1:

Above and on diagonal: 1 <7
) (m) _ ()
Unchanged after step i-1: @jj- = Qg
Below diagonal: J <t
, . . +1
Become and remain 0 in step ;. a,f;") = .. a,fj '=0
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LU Decomposition / Factorization
via Gauss Elimination, assuming no pivoting needed

J
R — -
(- a(l) Gauss Elimination (GE): iteration eqns.
; 12 E for the reduction at step k are
Aoy, k k k k k
2 a?(j+1)_ U—mmaéj), = ()/a()

This gives the final changes occurring
L in reduction steps k=1 to k =i-I

0 - 0ld? - - o)

Now, to evaluate the changes that
accumulated from when one started the

After reduction step i-1:
elimination, let’s try to sum this iteration

Above and on diagonal: 1< equation, from:
Unchanged after step i-1: af:?) = af;) 1 to i-1 for above and on diagonal
: s * 1 to j for below diagonal
Below diagonal: J <t J 9
As done in class, you can also sum up to
Become and remain 0 in step j: a,f;") = a,fj“) 0 | an arbitrary r and see which terms remain.
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LU Decomposition / Factorization
via Gauss Elimination, assuming no pivoting needed

J

@ @ on
| | T
_ aip @2 - - 0t Ay
1
(2)
Aoy,
i(’*’) [ (;)] |
a;
(i) :
0 ) 0 Ap; - - a.l(’:f)i, |
After reduction step i-1:
Above and on diagonal: i <j
: () — . gl
Unchanged after step i-1: @i~ = " Qj
Below diagonal: J <t
Become and remain 0 in step j: a,f;") = a,fj“) 0
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Gauss Elimination (GE): iteration eqns.

for the reduction at step k are
k k k k), (k
?(j+1)_ U—mmaéj), ik = ()/a()

This gives the final changes occurring
in reduction steps k=1 to k=i-1

Y these step-k eqns. from (k=1 to i-1) =
Gives the total change above diagonal:

> this step-k eqns. from (k=1 to j) =
Gives the total change below diagonal:

! (k)
> Mikay;
k=1

1> 7 ag)—ﬂ—au
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LU Decomposition / Factorization
via Gauss Elimination, assuming no pivoting needed

J

@ @ on
| | T
_ aip @2 - - 0t Ay
: (2)
Aoy,
=(1) (i)
A [a,f,;j ]
(i) :
0 ) 0 Ap; - - aﬂ(’;f)i, |
After reduction step i-1:
Above and on diagonal: i <j
. () _ . ()
Unchanged after step i-1: @jj- = Qg
Below diagonal: J <t
Become and remain 0 in stepj: a\)) =---af{™) =
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Summary: summing the changes in
reduction steps k=1 to k=i-1:

(k+1) _ (k) (k)
G:_.J = a,,,j — m;{kakj )

k k
Mk = G»Ek)/ ai:k)

We obtained: Total change above diagonal
i—1
L i k
1< a§j) =aij— > mikag@j) (1)
k=1
We obtained: Total change below diagonal
. J
1> ag-) m,,_;kag;-)
k=1

(2)

— Now, if we define:

and use them in equations (1) and (2) =>

T
ro._ . (k)
1< a = ) Mikay;
k=1
3 .
g (k)
1> ap = ) Mypay;
~ k=1
min(,7)
(k)
= Qjj = Z Mikaj.;
k=1
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LU Decomposition / Factorization
via Gauss Elimination, assuming no pivoting needed

? o
‘ . ) N (k) i
Result seems to be a ‘Matrix product’: aij = MikQy,j Sum stops at diagonal
k=1
Lower triangular Upper triangular
_ (k)
aj mi A

Below diagonal

N

1>
S J (k) =
1> @ = ) Mipay;
k=1 ,
I *
Above diagonal J
1< g @ TN ®

(k)
i< J o aig = ) migay;
k=1
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LU Decomposition / Factorization
via Gauss Elimination, assuming no pivoting needed

GE reduction directly yields LU factorization

>
||

3
cl

Lower triangular

F

0 1<y
f:‘l?'j:<1 '3:}

L

Upper triangular

a) i<

0 1>7

cll
I
=
|

Number of Operations for LU?

2.29

Compact storage:
no need for additional memory (the unitary
diagonal of L does not need to be stored)

mp1

Lower diagonal implied

(referred to as the Doolittle decomposition)
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LU Decomposition / Factorization
via Gauss Elimination, assuming no pivoting needed

GE Reduction directly yields LU factorization

>
||

3
cl

Compact storage

Lower triangular

F

0 1<y
f:‘l?'j:<1 '3:}

L

Upper triangular

— (1:,(;) ) gj | My
U= u; = -
0 1> Lower diagonal implied
Number of Operations for LU? m; =1, 1=1,...n

Same as Gauss Elimination:
less in Elimination phase (no RHS operations), but more in double back-substitution phase
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Pivoting in LU Decomposition / Factorization

Before reduction, step & Forward substitution, step k
1 1 1) ]
o o ) L
Moy 3522) : . aé?) Ly ="
" Interchange rows i and k
___________________________________________________ (b, |
@ Mi k-1 Qg ?
o
| Mn1 - Mpk-1 aizk) o a}(akn) . 3 o X
Pivoting if @
k k : .
(I,Ek)‘ > ‘Gik) , 1 > k b?'
To do this interchange of rows i and £, 1
Pp =i | On | /Dummy var.
. In code, use b(p(k)),
use a pivot vector: { or else which amounts to: b = b,
pr=k f pr=i=4 by = b
Pivot element vector b, — pk)
pi, i=1,...n
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LU Decomposition / Factorization:
Variations

Doolittle decomposition:

— m.=1 (implied but could be stored in L)

Crout decomposition:

— Directly impose diagonal of U equal to 1’s (instead of L)

— Sweeps both by columns and rows (columns for L and rows for U)
— Reduce storage needs

— Each element of A only employed once
Matrix inverse: AX=l => (LU)X=I

0’ 11 3
— Numbers of ops: 0O % + pn* + pnt | for p=n, z>%+2n3:%

Forward Backward
LU Decomp.  Substitution  Substitution
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: Recall Lecture 3: The Condition Number

* The condition of a mathematical problem relates to its
sensitivity to changes in its input values

» A computation is numerically unstable if the
uncertainty of the input values are magnified by the
numerical method

« Considering x and f(x), the condition number is the
ratio of the relative error in f(x) to that in x.

« Using first-order Taylor series  f(®=fX)+f'(X)(X-x)

. Relative error in f{x); L/ JDx=)
J(X) J(¥)

. Relative error in x: &=%

X

X /'(X)
J (%)
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Linear Systems of Equations
Error Analysis

Linear systems _
How is the relative error of X

Function of one variable o
dependent on errors inb?

y = f(z) Ax="b
f(@) — f(z) Tz
=K = ) — 1.0 1.0 —
f(2) z |0 FTETOR — , det(A) = 0.0001
1.0 1.0001
‘ oy| _ 7 oz Using MATLAB with different b’s (see tbt8.m):
Y Z _ 2 2
b = = X =
The condition number K is a 2 0
measure of the amplification of the
relative error by the function f(x) 5 .
2.0001 1

Small changes inb give large changes inx
The system is ill-Conditioned
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Vector and
Matrix Norms: <

Evaluation of
Condition Numbers

requires use of Norms Properties: A#0= HA >0

4 - e

Sub-multiplicative / Associative Norms HABH : HAH HBH
(n-by-n matrices with such norms form a < — _

Banach Algebra/space) | HKEH < HKH |Ix]]
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|4l = 11}:13%2 |25 “Maximum Column Sum’
S i=l
|Alleo = 12@3&2 a5 “Maximum Row Sum”
sm
" om 1/2
|Allz = Z |f1ij|2 “The Frobenius norm” (also called Euclidean
P norm)”, which for matrices differs from:
IAllz = v/ Amax(A*A) “The I-2 norm” (also called spectral norm)
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Linear Systems of Equations
Error Analysis: Perturbed Right-hand Side

Vector and Matrix Norms Perturbed Right-hand Side implies

1%[|, = max |z Ax - b

[ T
&, = mpx 3 s
o0 1 j=1

Properties _ B
f#ﬁ#“i >0 Aéi:ﬂjl
X = A b
o] - ol £ '

loxl| < |[&] |aB] N
. Bl = A=) < |&] 1

Relative Error Magnification

||0x]| ob

5] < | 5] < !
Condition Number
&) <[] k= |5 ]
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Linear Systems of Equations
Error Analysis: Perturbed Coefficient Matrix

Vector and Matrix Norms Perturbed Coefficient Matrix implies

1%[|, = max |z

(K+ 5?) (X+6x)=b
Subtract unperturbed equation
ASX +0A (X+6%)=0
Properties 1 / (Neglect 2nd order)

:—]_ —_—

A£0= A >0 5x = —A 0A (X +0%) ~ —A AX

|

[ T
&, = mpx 3 s
o0 1 j=1

o] < |[A”

[lo& s

Relative Error Magnification

o<

— Ei ]
1] < =) e oo Number
e
e < ] aali il
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Example: lll-Conditioned System

1.0 1.0 ajy o 1 0 4-digit Arithmetic
1.0 1.0001 o1 dA99 01
| n=4
] a = [ [1.01.0]" [1.0 1.00011"']  {bt6.m
_ b= [1 2]
det(A) = 0.0001
ai=inv(a);
a nrm=max( abs(a(l,1)) + abs(a(l,2)) ,
abs(a(2,1)) + abs(a(2,2)) )
ai nrm=max( abs(ai(l,1)) + abs(ai(l,2)) ,
— 1.0001 — 10,001 abs (ai (2,1)) + abs(ai(2,2)) )
Using ann = 0.0001 3 k=a nrm*ai nrm
Cramer’s 1 r=ai * b
rule: _ - .
a12 = —10,000 —[0 0];
Ly 0°0001 m2l=a(2,1)/a(l,1);
—1 a(2,1)=0;
a = = —10.000 a(2,2) = radd(a(2,2),-m21*a(1,2),n);
21 0.0001 ’ b(2) = radd(b(2),-m21*b(1),n);
1.0 x(2)  =Db(2)/a(2,2);
ann = 0.0001 — 10: 000 x(1) = (radd(b(l), -a(l,2)*x(2),n))/a(l,1);
— . x'
HKH — 2.0001 _
_ = K(A) ~|40,000
HA H — 20,001 —
00 lll-conditioned system
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Example: Better-Conditioned System

0.0001 1.0 aip a2 1 0 4'd|g|t Arithmetic
1.0 1.0 as1 99 01
| n=4
] a = [ [0.0001 1.0]' [1.0 1.01'1 {ht7.m
_ b= [1 2] ’
det(A) = 0.9999
ai=inv(a);
a nrm=max( abs(a(l,1)) + abs(a(l,2)) ,
abs(a(2,1)) + abs(a(2,2)) )
ai nrm=max( abs(ai(l,1)) + abs(ai(l,2)) ,
J— —1 abs(ai(2,1)) + abs(ai(2,2)) )
. ann = —————- = —1,0001 k=a nrm*ai nrm
Using 0.9999 - -
Cramer’s 1 r=ai * b
rule: a;p = ——— =1.0001 (0 015
0.9999
LS — m2l=a(2,1)/a(1,1);
1 a(2,1)=0;
ayn, = ——— = 1.0001 a(2,2) = radd(a(2,2),-m21*a(1,2),n);
0.9999 b(2) = radd(b(2),-m21*b(1l),n);
a _ —0.0001 — —0.0001 x(2) = Db(2)/a(2,2);
11 pu— - — — ), — — * .
_ 09999 i'(l) (radd(b (1), -a(l,2)*x(2),n))/a(l,1);
& - 20]
g = K(A) ~4
HA H — 2.0002 | 3
00 Relatively Well-conditioned system
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: Recall Lecture 3: The Condition Number

* The condition of a mathematical problem relates to its
sensitivity to changes in its input values

» A computation is numerically unstable if the
uncertainty of the input values are magnified by the
numerical method

« Considering x and f(x), the condition number is the
ratio of the relative error in f(x) to that in x.

« Using first-order Taylor series

. Relative error in f{x); L/ JDx=)
J(X) J(¥)

. Relative error in x: &=%

X

X /'(X)
J (%)
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