2.29 Numerical Fluid Mechanics Spring 2015 - Lecture 6

REVIEW Lecture 5:

Systems of Linear Equations

- Direct Methods for solving Linear Equation Systems
- Determinants and Cramer's Rule
- Gauss Elimination
- Algorithm
- Forward Elimination/Reduction to Upper Triangular System
- Back-Substitution
- Number of Operations: $O\left(\frac{2}{3} n^{3}+n^{2}\right)+O\left(n^{2}\right)$
- Numerical implementation and stability
- Partial Pivoting
- Equilibration
- Full pivoting
- Well suited for dense matrices
- Issues: round-off, cost, does not vectorize/parallelize well
- Special cases, Multiple RHSs, Operation count $O\left(n^{3}+p n^{2}\right)+O\left(p n^{2}\right)$

TODAY's Lecture: Systems of Linear Equations II

Direct Methods

- Cramer's Rule
- Gauss Elimination
- Algorithm
- Numerical implementation and stability
- Partial Pivoting
- Equilibration
- Full Pivoting
- Well suited for dense matrices
- Issues: round-off, cost, does not vectorize/parallelize well
- Special cases, Multiple right hand sides, Operation count
- LU decomposition/factorization
- Error Analysis for Linear Systems
- Condition Number
- Special Matrices: Tri-diagonal systems
- Iterative Methods
- Jacobi's method
- Gauss-Seidel iteration
2.29 - Convergence

Reading Assignment

- Chapters 9 and 10 of "Chapra and Canale, Numerical Methods for Engineers, 2006/2010/204."
- Any chapter on "Solving linear systems of equations" in references on CFD that we provided. For example: chapter 5 of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, $3^{\text {rd }}$ edition, 2002"

LU Decomposition/Factorization:

LU Decomposition: Separates time-consuming elimination for A from that for b / B
The coefficient Matrix $\overline{\overline{\mathbf{A}}}$ is decomposed as

$$
\overline{\overline{\mathbf{A}}}=\overline{\overline{\mathbf{L}}} \cdot \overline{\overline{\mathbf{U}}}
$$

where $\overline{\overline{\mathbf{L}}} \xrightarrow{\text { is a lower triangular matrix }} \overline{\overline{\mathbf{L}}}=\left[l_{i j}\right]=$ and $\overline{\mathrm{U}}$ is an upper triangular matrix

1. $\overline{\mathbf{L}} \vec{y}=\vec{b} \quad$ Forward substitution
2. $\overline{\overline{\mathrm{U}}} \vec{x}=\vec{y} \quad$ Back substitution

$$
\stackrel{\overline{\mathrm{U}}}{ }=\left[u_{i j}\right] \xrightarrow{=}
$$

How to determine $\overline{\overline{\mathbf{L}}}$ and $\overline{\overline{\mathrm{U}}}$?

LU Decomposition / Factorization via Gauss Elimination, assuming no pivoting needed

Gauss Elimination (GE): iteration eqns. for the reduction at step k are

$$
a_{i j}^{(k+1)}=a_{i j}^{(k)}-m_{i k} a_{k j}^{(k)}, \quad m_{i k}=a_{i k}^{(k)} / a_{k k}^{(k)}
$$

This gives the final changes occurring in reduction steps $k=1$ to $k=i-1$

After reduction step i-1:

$$
\text { Above and on diagonal: } \quad i \leq j
$$

Unchanged after step $i-1: \quad a_{i j}^{(n)}=\cdots a_{i j}^{(i)}$

$$
\text { Below diagonal: } \quad j<i
$$

Become and remain 0 in step j : $a_{i j}^{(n)}=\cdots a_{i j}^{(j+1)}=0$

LU Decomposition / Factorization via Gauss Elimination, assuming no pivoting needed

After reduction step i-1:
Above and on diagonal:
$i \leq j$

Unchanged after step $i-1: \quad a_{i j}^{(n)}=\cdots a_{i j}^{(i)}$

$$
\text { Below diagonal: } \quad j<i
$$

Gauss Elimination (GE): iteration eqns. for the reduction at step k are
$a_{i j}^{(k+1)}=a_{i j}^{(k)}-m_{i k} a_{k j}^{(k)}, \quad m_{i k}=a_{i k}^{(k)} / a_{k k}^{(k)}$
This gives the final changes occurring in reduction steps $k=1$ to $k=i-1$

Now, to evaluate the changes that accumulated from when one started the elimination, let's try to sum this iteration equation, from:

- 1 to i-1 for above and on diagonal
- 1 to j for below diagonal

As done in class, you can also sum up to an arbitrary r and see which terms remain.

LU Decomposition / Factorization via Gauss Elimination, assuming no pivoting needed

After reduction step i-1:
Above and on diagonal: $i \leq j$

Unchanged after step $i-1$:

$$
a_{i j}^{(n)}=\cdots a_{i j}^{(i)}
$$

$$
\text { Below diagonal: } \quad j<i
$$

Gauss Elimination (GE): iteration eqns. for the reduction at step k are

$$
a_{i j}^{(k+1)}=a_{i j}^{(k)}-m_{i k} a_{k j}^{(k)}, \quad m_{i k}=a_{i k}^{(k)} / a_{k k}^{(k)}
$$

This gives the final changes occurring in reduction steps $k=1$ to $k=i-1$
\sum these step-k eqns. from ($k=1$ to $\mathrm{i}-1$) $=>$ Gives the total change above diagonal:

$$
i \leq j: \quad a_{i j}^{(i)}=a_{i j}-\sum_{k=1}^{i-1} m_{i k} a_{k j}^{(k)}
$$

\sum this step-k eqns. from ($\mathrm{k}=1$ to j) => Gives the total change below diagonal:

$$
i>j: \quad a_{i j}^{(i)}=0=a_{i j}-\sum_{k=1}^{j} m_{i k} a_{k j}^{(k)}
$$

LU Decomposition / Factorization via Gauss Elimination, assuming no pivoting needed

After reduction step i-1:
Above and on diagonal: $i \leq j$

Unchanged after step $i-1: \quad a_{i j}^{(n)}=\cdots a_{i j}^{(i)}$

$$
\text { Below diagonal: } \quad j<i
$$

Summary: summing the changes in
reduction steps $k=1$ to $k=i-1$:

$$
a_{i j}^{(k+1)}=a_{i j}^{(k)}-m_{i k} a_{k j}^{(k)}, \quad m_{i k}=a_{i k}^{(k)} / a_{k k}^{(k)}
$$

We obtained: Total change above diagonal

$$
\begin{equation*}
i \leq j: \quad a_{i j}^{(i)}=a_{i j}-\sum_{k=1}^{i-1} m_{i k} a_{k j}^{(k)} \tag{1}
\end{equation*}
$$

We obtained: Total change below diagonal

$$
\begin{equation*}
i>j: \quad a_{i j}^{(i)}=0=a_{i j}-\sum_{k=1}^{j} m_{i k} a_{k j}^{(k)} \tag{2}
\end{equation*}
$$

\rightarrow Now, if we define:

$$
m_{i i}=1, \quad i=1, \ldots n
$$

and use them in equations (1) and (2) =>

$$
\left\{\begin{array}{c}
i \leq j: a_{i j}=\sum_{k=1}^{i} m_{i k} a_{k j}^{(k)} \\
i>j: a_{i j}=\sum_{k=1}^{j} m_{i k} a_{k j}^{(k)} \\
\Rightarrow a_{i j}=\sum_{k=1}^{\min (i, j)} m_{i k} a_{k j}^{(k)}
\end{array}\right.
$$

LU Decomposition / Factorization

 via Gauss Elimination, assuming no pivoting neededResult seems to be a 'Matrix product': $a_{i j}=\sum_{k=1}^{\min (i, j)} m_{i k} a_{k j}^{(k)} \quad$ Sum stops at diagonal

Lower triangular Upper triangular
$a_{i j}$
Below diagonal
$i>j:$
$i>j: a_{i j}=\sum_{k=1}^{j} m_{i k} a_{k j}^{(k)}$

Above diagonal
 $i \leq j:$
$i \leq j: \quad a_{i j}=\sum_{k=1}^{i} m_{i k} a_{k j}^{(k)}$

$m_{i k}$

PFJL Lecture 6, 9

LU Decomposition / Factorization via Gauss Elimination, assuming no pivoting needed

GE reduction directly yields LU factorization

$$
\begin{gathered}
\overline{\overline{\mathbf{A}}}=\overline{\overline{\mathbf{L}}} \cdot \overline{\overline{\mathbf{U}}} \\
\text { Lower triangular } \\
\overline{\overline{\mathbf{L}}}=l_{i j}= \begin{cases}0 & i<j \\
1 & i=j \\
m_{i j} & i>j\end{cases} \\
\text { Upper triangular } \\
\overline{\overline{\mathbf{U}}}=u_{i j}= \begin{cases}a_{i j}^{(i)} & i \leq j \\
0 & i>j\end{cases}
\end{gathered}
$$

Number of Operations for LU?

Compact storage:
no need for additional memory (the unitary diagonal of L does not need to be stored)

Lower diagonal implied

$$
m_{i i}=1, \quad i=1, \ldots n
$$

(referred to as the Doolittle decomposition)

LU Decomposition / Factorization via Gauss Elimination, assuming no pivoting needed

GE Reduction directly yields LU factorization

$$
\begin{gathered}
\overline{\overline{\mathbf{A}}}=\overline{\overline{\mathbf{L}}} \cdot \overline{\overline{\mathbf{U}}} \\
\text { Lower triangular } \\
\overline{\overline{\mathbf{L}}}=l_{i j}= \begin{cases}0 & i<j \\
1 & i=j \\
m_{i j} & i>j\end{cases} \\
\text { Upper triangular } \\
\overline{\overline{\mathbf{U}}}=u_{i j}= \begin{cases}a_{i j}^{(i)} & i \leq j \\
0 & i>j\end{cases}
\end{gathered}
$$

Number of Operations for LU?

Same as Gauss Elimination: less in Elimination phase (no RHS operations), but more in double back-substitution phase

Pivoting in LU Decomposition / Factorization

Before reduction, step k

Pivoting if

$$
\left|a_{i k}^{(k)}\right| \gg\left|a_{k k}^{(k)}\right|, \quad i>k
$$

To do this interchange of rows i and k,
use a pivot vector: $\left\{\begin{array}{l}p_{k}=i \\ \text { or else } \\ p_{k}=k\end{array}\right.$
Pivot element vector

$$
p_{i}, \quad i=1, \ldots n
$$

LU Decomposition / Factorization: Variations

- Doolittle decomposition:
- $m_{\mathrm{ii}}=1$ (implied but could be stored in \mathbf{L})
- Crout decomposition:
- Directly impose diagonal of \mathbf{U} equal to 1 's (instead of L)
- Sweeps both by columns and rows (columns for L and rows for U)
- Reduce storage needs
- Each element of A only employed once
- Matrix inverse: $\mathbf{A X}=\mathbf{I}=>(\mathbf{L U}) \mathbf{X}=\mathbf{I}$
- Numbers of ops: $O\left(\begin{array}{c}\frac{2 n^{3}}{3}+p n^{2}+p n^{2} \\ \text { Lu Dcomp. Fornurd } \\ \text { Subsfitution } \\ \text { Backusudd } \\ \text { Substution }\end{array}\right)$ for $p=n, \quad \Rightarrow \frac{2 n^{3}}{3}+2 n^{3}=\frac{8 n^{3}}{3}$

Recall Lecture 3: The Condition Number

- The condition of a mathematical problem relates to its sensitivity to changes in its input values
- A computation is numerically unstable if the uncertainty of the input values are magnified by the numerical method
- Considering x and $f(x)$, the condition number is the ratio of the relative error in $f(x)$ to that in x.
- Using first-order Taylor series $f(\bar{x})=f(\bar{x})+f^{\prime}(\bar{x})(\bar{x}-\bar{x})$
- Relative error in $f(x): \frac{f(x)-f(\bar{x})}{f(\bar{x})} \cong \frac{f^{\prime}(\bar{x})(x-\bar{x})}{f(\bar{x})}$
- Relative error in $x: \frac{(x-\bar{x})}{\bar{x}}$
- Condition Nb = Ratio of relative errors:

$$
K_{p}=\left|\frac{\bar{x} f^{\prime}(\bar{x})}{f(\bar{x})}\right|
$$

Linear Systems of Equations Error Analysis

Function of one variable

$$
y=f(x)
$$

Condition number
$\left|\frac{f(\bar{x})-f(x)}{f(x)}\right|=K\left|\frac{\bar{x}-x}{x}\right|, \quad \bar{x}=x+\delta x$

$$
\left|\frac{\delta y}{y}\right|=K\left|\frac{\delta x}{x}\right|
$$

The condition number K is a measure of the amplification of the relative error by the function $f(x)$

Linear systems
How is the relative error of $\overline{\mathbf{x}}$ dependent on errors in $\overline{\mathrm{b}}$?

$$
\begin{gathered}
\overline{\overline{\mathbf{A}} \overline{\mathbf{x}}=\overline{\mathbf{b}}} \\
\text { Example } \\
\overline{\overline{\mathbf{A}}}=\left[\begin{array}{cc}
1.0 & 1.0 \\
1.0 & 1.0001
\end{array}\right], \operatorname{det}(\overline{\overline{\mathbf{A}}})=0.0001
\end{gathered}
$$

Using MATLAB with different $\overline{\mathbf{b}}$'s (see tbt8.m):

$$
\begin{gathered}
\overline{\mathbf{b}}=\left\{\begin{array}{l}
2 \\
2
\end{array}\right\} \Rightarrow \overline{\mathbf{x}}=\left\{\begin{array}{l}
2 \\
0
\end{array}\right\} \\
\overline{\mathbf{b}}=\left\{\begin{array}{c}
2 \\
2.0001
\end{array}\right\} \Rightarrow \overline{\mathbf{x}}=\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}
\end{gathered}
$$

Small changes in $\overline{\mathrm{b}}$ give large changes in $\overline{\mathrm{x}}$
The system is ill-Conditioned

Linear Systems of Equations: Norms

Evaluation of Condition Numbers requires use of Norms

Vector and Matrix Norms:

$$
\left\{\begin{array}{c}
\|\overline{\mathbf{x}}\|_{\infty}=\max _{i}\left|x_{i}\right| \\
\|\overline{\overline{\mathbf{A}}}\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|
\end{array}\right.
$$

$$
\text { Properties: } \quad \overline{\overline{\mathbf{A}}} \neq \overline{\overline{\mathbf{0}}} \Rightarrow\|\overline{\overline{\mathbf{A}}}\|>0
$$

$$
\|\alpha \overline{\overline{\mathbf{A}}}\|=|\alpha|\|\overline{\overline{\mathbf{A}}}\|
$$

$$
\|\overline{\overline{\mathbf{A}}}+\overline{\overline{\mathbf{B}}}\| \leq\|\overline{\overline{\mathbf{A}}}\|+\|\overline{\overline{\mathbf{B}}}\|
$$

Sub-multiplicative / Associative Norms (n-by-n matrices with such norms form a Banach Algebra/space)

$$
\|\overline{\overline{\mathbf{A B}}}\| \leq\|\overline{\overline{\mathbf{A}}}\|\|\overline{\overline{\mathbf{B}}}\|
$$

$$
\|\overline{\overline{\mathbf{A}}} \overline{\mathbf{x}}\| \leq\|\overline{\overline{\mathbf{A}}}\|\|\overline{\mathbf{x}}\|
$$

Examples of Matrix Norms

$$
\begin{aligned}
& \|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|a_{i j}\right| \\
& \|A\|_{\infty}=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right| \\
& \|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2} \\
& \|A\|_{2}=\sqrt{\lambda_{\max }\left(A^{*} A\right)}
\end{aligned}
$$

"Maximum Column Sum"

"Maximum Row Sum"
"The Frobenius norm" (also called Euclidean norm)", which for matrices differs from:
"The l-2 norm" (also called spectral norm)

Linear Systems of Equations Error Analysis: Perturbed Right-hand Side

Vector and Matrix Norms

$$
\begin{gathered}
\|\overline{\mathbf{x}}\|_{\infty}=\max _{i}\left|x_{i}\right| \\
\|\overline{\overline{\mathbf{A}}}\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right| \\
\text { Properties } \\
\overline{\overline{\mathbf{A}}} \neq \overline{\overline{\mathbf{0}}} \Rightarrow\|\overline{\overline{\mathbf{A}}}\|>0 \\
\|\alpha \overline{\overline{\mathbf{A}}}\|=|\alpha|\|\overline{\overline{\mathbf{A}}}\| \\
\|\overline{\overline{\mathbf{A}}}+\overline{\overline{\mathbf{B}}}\| \leq\|\overline{\overline{\mathbf{A}}}\|+\|\overline{\overline{\mathbf{B}}}\| \\
\|\overline{\overline{\mathbf{A B}}}\| \leq\|\overline{\overline{\mathbf{A}}}\|\|\overline{\overline{\mathbf{B}}}\| \\
\|\overline{\overline{\mathbf{A}}} \overline{\mathbf{x}}\| \leq\|\overline{\overline{\mathbf{A}}}\|\|\overline{\mathbf{x}}\|
\end{gathered}
$$

Perturbed Right-hand Side implies

$$
\begin{gathered}
\overline{\overline{\mathbf{A}} \overline{\mathbf{x}}}=\overline{\mathbf{b}} \\
\overline{\overline{\mathbf{A}}}(\overline{\mathbf{x}}+\delta \overline{\mathbf{x}})=\overline{\mathbf{b}}+\delta \overline{\mathbf{b}}
\end{gathered}
$$

Subtract original equation

Linear Systems of Equations Error Analysis: Perturbed Coefficient Matrix

Vector and Matrix Norms

$$
\begin{gathered}
\|\overline{\mathbf{x}}\|_{\infty}=\max _{i}\left|x_{i}\right| \\
\|\overline{\overline{\mathbf{A}}}\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right| \\
\text { Properties } \\
\overline{\overline{\mathbf{A}}} \neq \overline{\overline{\mathbf{0}}} \Rightarrow\|\overline{\overline{\mathbf{A}}}\|>0 \\
\|\alpha \overline{\overline{\mathbf{A}}}\|=|\alpha|\|\overline{\overline{\mathbf{A}}}\| \\
\|\overline{\overline{\mathbf{A}}}+\overline{\overline{\mathbf{B}}}\| \leq\|\overline{\overline{\mathbf{A}}}\|+\|\overline{\overline{\mathbf{B}}}\| \\
\|\overline{\overline{\mathbf{A B}}}\| \leq\|\overline{\overline{\mathbf{A}}}\|\|\overline{\overline{\mathbf{B}}}\| \\
\|\overline{\overline{\mathbf{A}}} \overline{\mathbf{x}}\| \leq\|\overline{\overline{\mathbf{A}}}\|\|\overline{\mathbf{x}}\|
\end{gathered}
$$

Perturbed Coefficient Matrix implies

$$
(\overline{\overline{\mathbf{A}}}+\delta \overline{\overline{\mathbf{A}}})(\overline{\mathbf{x}}+\delta \overline{\mathbf{x}})=\overline{\mathbf{b}}
$$

Subtract unperturbed equation

$$
\overline{\overline{\mathbf{A}}} \delta \overline{\mathbf{x}}+\delta \overline{\overline{\mathbf{A}}}(\overline{\mathbf{x}}+\delta \overline{\mathbf{x}})=\overline{\mathbf{0}}
$$

$$
\text { (Neglect } 2^{\text {nd }} \text { order) }
$$

$$
\delta \overline{\mathbf{x}}=-\overline{\overline{\mathbf{A}}}^{-1} \delta \overline{\overline{\mathbf{A}}}(\overline{\mathbf{x}}+\delta \overline{\mathbf{x}}) \simeq-\overline{\mathbf{A}}^{-1} \delta \overline{\overline{\mathbf{A}}} \overline{\mathbf{x}}
$$

$$
\|\delta \overline{\mathbf{x}}\| \leq\left\|\overline{\overline{\mathbf{A}}}^{-1}\right\|\|\delta \overline{\overline{\mathbf{A}}}\|\|\overline{\mathbf{x}}\|
$$

Relative Error Magnification

$$
\begin{aligned}
& \frac{\|\delta \overline{\mathbf{x}}\|}{\|\overline{\mathbf{x}}\|} \leq\left\|\overline{\overline{\mathbf{A}}}^{-1}\right\|\|\overline{\overline{\mathbf{A}} \|}\| \frac{\|\delta \overline{\overline{\mathbf{A}}}\|}{\|\overline{\overline{\mathbf{A}}}\|} \\
& \begin{array}{c}
\text { Condition Number } \\
K(\overline{\overline{\mathbf{A}}})=\left\|\overline{\overline{\mathbf{A}}}^{-1}\right\|\|\overline{\overline{\mathbf{A}}}\|
\end{array}
\end{aligned}
$$

Example: III-Conditioned System

$$
\left.\| \begin{array}{l}
\|\overline{\overline{\mathbf{A}}}\|_{\infty} \\
\left\|\overline{\overline{\mathbf{A}}}^{-1}\right\|_{\infty} \\
=20,0001 \\
\hline \text { III-conditioned system }
\end{array}\right\} \Rightarrow \begin{array}{r}
\overline{\overline{\mathbf{A}}}) \simeq 40,000 \\
\end{array}
$$

Example: Better-Conditioned System

$$
\begin{aligned}
& {\left[\begin{array}{cc}
0.0001 & 1.0 \\
1.0 & 1.0
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
& \operatorname{det}(\overline{\overline{\mathbf{A}}})=0.9999 \\
& \begin{array}{l}
\begin{array}{l}
\text { Using } \\
\text { Cramer's } \\
\text { rule: }
\end{array} \\
a_{12}=\frac{1}{0.9999}=1.0001 \\
a_{21}=\frac{1}{0.9999}=1.0001 \\
a_{11}=\frac{-0.0001}{0.9999}=-0.0001
\end{array} \\
& \text { 4-digit Arithmetic } \\
& \left.\begin{array}{llr}
\|\overline{\overline{\mathbf{A}}}\|_{\infty} & =2.0 \\
\left\|\overline{\overline{\mathbf{A}}}^{-1}\right\|_{\infty} & =2.0002
\end{array}\right\} \Rightarrow \begin{array}{l}
\Rightarrow(\overline{\overline{\mathbf{A}}}) \simeq 4 \\
\text { Relatively Well-conditioned system }
\end{array}
\end{aligned}
$$

Recall Lecture 3: The Condition Number

- The condition of a mathematical problem relates to its sensitivity to changes in its input values
- A computation is numerically unstable if the uncertainty of the input values are magnified by the numerical method
- Considering x and $f(x)$, the condition number is the ratio of the relative error in $f(x)$ to that in x.
- Using first-order Taylor series f
- Relative error in $f(x): \frac{f(x)-f(\bar{x})}{f(\bar{x})} \cong \frac{f^{\prime}(\bar{x})(x-\bar{x})}{f(\bar{x})}$
- Relative error in $x: \frac{(x-\bar{x})}{\bar{x}}$
- Condition Nb = Ratio of relative errors:

MIT OpenCourseWare
http://ocw.mit.edu

2.29 Numerical Fluid Mechanics

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

