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2.29 Numerical Fluid Mechanics

Spring 2015 – Lecture 6

REVIEW Lecture 5:

Systems of Linear Equations

• Direct Methods for solving Linear Equation Systems

– Determinants and Cramer’s Rule

– Gauss Elimination

• Algorithm

– Forward Elimination/Reduction to Upper Triangular System

– Back-Substitution

– Number of Operations:

• Numerical implementation and stability

– Partial Pivoting 

– Equilibration

– Full pivoting

– Well suited for dense matrices

– Issues: round-off, cost, does not vectorize/parallelize well

• Special cases, Multiple RHSs, Operation count
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TODAY’s Lecture: Systems of Linear Equations II

• Direct Methods 

– Cramer’s Rule

– Gauss Elimination

• Algorithm

• Numerical implementation and stability

– Partial Pivoting

– Equilibration

– Full Pivoting

– Well suited for dense matrices 

– Issues: round-off, cost, does not vectorize/parallelize well

• Special cases, Multiple right hand sides, Operation count

– LU decomposition/factorization

– Error Analysis for Linear Systems

– Condition Number

– Special Matrices: Tri-diagonal systems

• Iterative Methods 

– Jacobi’s method

– Gauss-Seidel iteration

– Convergence
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Reading Assignment

• Chapters 9 and 10 of “Chapra and Canale, Numerical 
Methods for Engineers, 2006/2010/204.”
– Any chapter on “Solving linear systems of equations” in references on 

CFD that we provided. For example: chapter 5 of “J. H. Ferziger and 
M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, 
3rd edition, 2002”
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LU Decomposition/Factorization:

The coefficient Matrix  A  is decomposed as

where       is a lower triangular matrix
and        is an upper triangular matrix

Then the solution is performed in two simple steps

1.
2.

Forward substitution

Back substitution

How to determine      and       ?

LU Decomposition: Separates time-consuming elimination for A from that for b / B
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After reduction step i-1:

Above and on diagonal:

Below diagonal:

Unchanged after step i-1:

Become and remain 0 in step j:

LU Decomposition / Factorization
via Gauss Elimination, assuming no pivoting needed

i

j
Gauss Elimination (GE): iteration eqns. 

for the reduction at step k are

This gives the final changes occurring 
in reduction steps k = 1 to k = i-1
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After reduction step i-1:

Above and on diagonal:

Below diagonal:

Unchanged after step i-1:

Become and remain 0 in step j:

LU Decomposition / Factorization
via Gauss Elimination, assuming no pivoting needed

i

j

Now, to evaluate the changes that 
accumulated from when one started the 
elimination, let’s try to sum this iteration 
equation, from:

• 1 to i-1 for above and on diagonal

• 1 to j for below diagonal

Gauss Elimination (GE): iteration eqns. 

for the reduction at step k are

This gives the final changes occurring 
in reduction steps k = 1 to k = i-1

As done in class, you can also sum up to 
an arbitrary r and see which terms remain.
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After reduction step i-1:

Above and on diagonal:

Below diagonal:

Unchanged after step i-1:

Become and remain 0 in step j:

LU Decomposition / Factorization
via Gauss Elimination, assuming no pivoting needed

∑ these step-k eqns. from (k=1 to i-1) => 
Gives the total change above diagonal:

∑ this step-k eqns. from (k=1 to j) => 
Gives the total change below diagonal:

i

j
Gauss Elimination (GE): iteration eqns. 

for the reduction at step k are

This gives the final changes occurring 
in reduction steps k = 1 to k = i-1
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After reduction step i-1:

Above and on diagonal:

Below diagonal:

Unchanged after step i-1:

Become and remain 0 in step j:

LU Decomposition / Factorization
via Gauss Elimination, assuming no pivoting needed

Summary: summing the changes in 
reduction steps k = 1 to k = i-1 :

We obtained: Total change above diagonal

We obtained: Total change below diagonal

→ Now, if we define:

and use them in equations (1) and (2) =>

(1)

(2)

i

j
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LU Decomposition / Factorization
via Gauss Elimination, assuming no pivoting needed

Result seems to be a ‘Matrix product’:

= x
i

j

Below diagonal

k

k

Sum stops at diagonal

= x

i

j

Above diagonal

k

k

Lower triangular Upper triangular

0

0

0

0
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=

=

Lower triangular

Upper triangular

GE reduction directly yields LU factorization
Compact storage:
no need for additional memory (the unitary 
diagonal of L does not need to be stored)

Lower diagonal implied

LU Decomposition / Factorization
via Gauss Elimination, assuming no pivoting needed

Number of Operations for LU?

(referred to as the Doolittle decomposition)
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=

=

Lower triangular

Upper triangular

GE Reduction directly yields LU factorization

Compact storage

Lower diagonal implied

Same as Gauss Elimination:
less in Elimination phase (no RHS operations), but more in double back-substitution phase

LU Decomposition / Factorization
via Gauss Elimination, assuming no pivoting needed

Number of Operations for LU?
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Pivoting in LU Decomposition / Factorization

Before reduction, step k

Pivoting if

or else

To do this interchange of rows i and k,

Pivot element vector

Forward substitution, step k

Interchange rows i and k

use a pivot vector:

Dummy var.

( )
,
k

n na

If

In code, use b(p(k)),
which amounts to:
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LU Decomposition / Factorization: 

Variations

• Doolittle decomposition: 

– mii=1 (implied but could be stored in L)

• Crout decomposition: 

– Directly impose diagonal of U equal  to 1’s (instead of L)

– Sweeps both by columns and rows (columns for L and rows for U)

– Reduce storage needs

– Each element of A only employed once

• Matrix inverse: AX=I => (LU)X=I

– Numbers of ops:
3 3 3
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Recall Lecture 3: The Condition Number

• The condition of a mathematical problem relates to its 
sensitivity to changes in its input values

• A computation is numerically unstable if the 
uncertainty of the input values are magnified by the 
numerical method

• Considering x and f(x), the condition number is the 
ratio of the relative error in f(x) to that in x.

• Using first-order Taylor series

• Relative error in f(x):

• Relative error in x: 

• Condition Nb = Ratio of relative errors: 

f (x)  f (x ) f '(x )(x x )


f (x ) f (x )

x f '(x )K p  f x( )

( )x x

x

( ) ( ) '( )( )f x f x f x x x  
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Linear Systems of Equations

Error Analysis
Linear systems

How is the relative error of x 
dependent on errors in b?

Example

Small changes in b give large changes in x
The system is ill-Conditioned

Function of one variable

Condition number

The condition number K is a 
measure of the amplification of the 

relative error by the function f(x)

Using MATLAB with different     ’s  (see tbt8.m):b
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Linear Systems of Equations: Norms

Vector and
Matrix Norms:

Properties: 

Evaluation of 

Condition Numbers 

requires use of Norms

Sub-multiplicative / Associative Norms
(n-by-n matrices with such norms form a 

Banach Algebra/space)
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Examples of Matrix Norms

“Maximum Column Sum”

“Maximum Row Sum”

“The Frobenius norm” (also called Euclidean 
norm)”, which for matrices differs from:

“The l-2 norm” (also called spectral norm)



PFJL  Lecture 6,    18Numerical Fluid Mechanics2.29

Linear Systems of Equations

Error Analysis: Perturbed Right-hand Side

Vector and Matrix Norms

Properties

Perturbed Right-hand Side implies

Subtract original equation

Relative Error Magnification

Condition Number
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Linear Systems of Equations

Error Analysis: Perturbed Coefficient Matrix

Vector and Matrix Norms

Properties

Perturbed Coefficient Matrix implies

Subtract unperturbed equation

Relative Error Magnification

Condition Number

(Neglect 2nd order)
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Example: Ill-Conditioned System

n=4

a = [ [1.0 1.0]' [1.0 1.0001]']

b= [1 2]'

ai=inv(a);

a_nrm=max( abs(a(1,1)) + abs(a(1,2)) , 

abs(a(2,1)) + abs(a(2,2)) )

ai_nrm=max( abs(ai(1,1)) + abs(ai(1,2)) , 

abs(ai(2,1)) + abs(ai(2,2)) )

k=a_nrm*ai_nrm

r=ai * b

x=[0 0];

m21=a(2,1)/a(1,1);

a(2,1)=0;

a(2,2) = radd(a(2,2),-m21*a(1,2),n);

b(2)   = radd(b(2),-m21*b(1),n);

x(2)   = b(2)/a(2,2);

x(1)   = (radd(b(1), -a(1,2)*x(2),n))/a(1,1);

x'

tbt6.m

Ill-conditioned system

4-digit Arithmetic

Using 
Cramer’s 
rule:
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Example: Better-Conditioned System

n=4

a = [ [0.0001 1.0]' [1.0 1.0]']

b= [1 2]'

ai=inv(a);

a_nrm=max( abs(a(1,1)) + abs(a(1,2)) , 

abs(a(2,1)) + abs(a(2,2)) )

ai_nrm=max( abs(ai(1,1)) + abs(ai(1,2)) , 

abs(ai(2,1)) + abs(ai(2,2)) )

k=a_nrm*ai_nrm

r=ai * b

x=[0 0];

m21=a(2,1)/a(1,1);

a(2,1)=0;

a(2,2) = radd(a(2,2),-m21*a(1,2),n);

b(2)   = radd(b(2),-m21*b(1),n);

x(2)   = b(2)/a(2,2);

x(1)   = (radd(b(1), -a(1,2)*x(2),n))/a(1,1);

x'

tbt7.m

Relatively Well-conditioned system

4-digit Arithmetic

Using 
Cramer’s 
rule:
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Recall Lecture 3: The Condition Number

• The condition of a mathematical problem relates to its 
sensitivity to changes in its input values

• A computation is numerically unstable if the 
uncertainty of the input values are magnified by the 
numerical method

• Considering x and f(x), the condition number is the 
ratio of the relative error in f(x) to that in x.

• Using first-order Taylor series

• Relative error in f(x):

• Relative error in x: 

• Condition Nb = Ratio of relative errors: 

f (x)  f (x ) f '(x )(x x )


f (x ) f (x )

x f '(x )K p  f x( )

( )x x

x

f
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