
Problem 1:  Measuring Viscometric Functions in the Parallel Plate Rheometer [25 points] 
 

	 � �

  
We have mentioned in class briefly the use 
of a parallel plate fixture for rheometric 
measurements. Such a fixture (as shown 
opposite) consists of a rotating cylindrical 
fixture of radius R mounted coaxially 
above another plate of same radius (or just 
a large flat plate).  Here we consider the 
steady flow of a non-Newtonian fluid in 
such a device; in which the upper plate is 
rotated at a constant rotation rate Ω  and 
the total torque  T  is measured. 

 
=>Use cylindrical polar coordinates {r,θ , z}  in the following analysis, and assume that H << R. 
 

a) [4 points] Assume a purely axisymmetric and steady flow with velocity field of separable 
form vθ (r) = rw(z) , where w(z) is an (as yet unknown) function.  Evaluate the velocity 
gradient tensor  ∇v , the deformation rate tensor  γ!  and all three invariants I, II, III of the 
deformation rate tensor for this flow field. Is this a simple shear flow? 
 

b) [3 points] Give a dimensionless criterion under which inertia in the flow is negligible. In 
the inertialess limit show that the theta component of the equations of motion tells us that 
the shear stress (and therefore the corresponding component of the shear rate tensor) is 
independent of the axial position z.  Use this fact to integrate the equation and find the full 
velocity field vθ (r)  which satisfies appropriate boundary conditions on the upper and 
lower plates. Show that the local shear rate in the device γ! θz (r)  varies linearly across the 
device; i.e. γ! (r) = γ!R r R .  Give an explicit expression for the rim shear rate γ! R  at r = R.  
We shall use this identity extensively below.  
 

c) [4 points] Show that the torque acting on the rotating plate is given by 
T = 2

R
π ∫ η(γ!)γ!r2 dr  and explain why this function can’t readily be simplified further. 

  0

        Using the fact that the shear rate varies linearly across the device to change variables 
in this integral using the identity γ! = γ! Rr R  and arrive at a new integral of the form 

T = (?)∫
γ!R (?) dγ!  in which the argument inside the integrand is only a function of the 

  0

local shear rate. {you need to specify the terms in the parentheses} 
 
 

d) [4 points] To simplify this result, we will use the Liebniz formula for differentiating an 
integral (see footnote at end if you don't recall what this is exactly). To start with 
rearrange your result from part (c) into a form that looks like the following: 
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d (Tγ! 3
R 2πR3 )

=  RHS? 
  dγ!R

And then use the Leibniz rule to show that: 
 

(T A) ⎡ d ln(T A)⎤η(γ!R ) = ⎢B +  
  γ!R ⎣ d ln ⎥       (1) 

γ!R ⎦

 where A and B are constants. Give values for these constants. 
 

e)  [4 points] This expression is nice as it gives us a way to evaluate the viscosity for any 
fluid in a parallel plate rheometer from the measured torque. Using the results in (c) show 
how your result in (d) simplifies for two special cases: (i) a Newtonian fluid with 

 η(γ!) = µ , and (ii) a power law fluid with  η(γ!) = Kγ!
n−1 . 

 
f) [2 points] Once the viscosity is measured using eq. (1) it can be compared with different 

models, such as the Carreau-Yasuda equation (discussed in class) and given by: 
 

η(γ!)−η s = 1+ (
(

⎡ λγ!)2
n

⎤
−1)/2

⎣ ⎦  
 η0 −ηs

In the figure above you can see data for a range of different wormlike micellar fluids (with 
different chemical compositions).  For the 33:20:100 mM fluid (green triangles) carefully 
estimate (to within ±50% is fine) appropriate values of the four parameters in the Carreau-Yasuda 
model (which as you can see describes the data very well). List the four values clearly in a table. 
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This parallel plate device can also be use

	
  
	
  
d to measure the two normal stress coefficients 

 Ψ1(γ!) = (τ11 −τ 22 ) γ! 2  and  Ψ2 (γ!) = (τ 22 −τ 33 ) γ! 2 .  After some more algebra (in curvilinear 
coordinates) it can be shown that the stress tensor for steady shear flow in cylindrical coordinates 
{r,θ , z}  can be written in most general form as: 

⎛ 0 0 0 ⎞
⎜τ = 0 ( ⎟Ψ1 +Ψ2 )γ!

2 ηγ!    (2) ⎜ ⎟
⎜ 0 ηγ! Ψ γ! 2 ⎟

 ⎝ 2 ⎠
 

g) [2 points]  Substitute these components into the radial component of the equation of 
motion and change the integration variable once again to show that the pressure field in 
the sample varies as 

p(r)
γ!

− pa =
R ( )γ! dγ!

 ∫   
γ!r

where again you need to specify the argument inside the parentheses.  
 

h) [2 points]  Recognizing that the local measured axial thrust acting at any point on the plate 
at z = 0 is not just the local pressure p(r) but in fact π zz  find an expression (in terms of an 
integral) for the local thrust at the middle of the plate r = 0.  Is your result finite? or 
infinite? (like we saw in the cone-and-plate analysis).  

 
In principle, this pressure/thrust can be measured as the rim shear rate is changed. However, the result is still not that 
useful as it involves an integral moment of the material functions.  With some more algebra one can obtain a more 
useful expression similar to that in eq. (1) above, but this involves some more effort, and I imagine you would rather 
go home J. [See the solution for details after Spring Break]. 
 
____________________ 

 
 
The Equations of motion in cylindrical coordinates are : 
 

 
** In case you need the components of  ∇v  see overleaf: 
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In cylindrical coordinates the components of  ∇v :  
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