2.43 ADVANCED THERMODYNAMICS

Spring Term 2024
LECTURE 05

Room 3-442
Tuesday, February 20, 2:30pm - 4:30pm

Instructor: Gian Paolo Beretta
beretta@mit.edu
Room 3-351d
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graphical proof of a more precise Clausius inequality
valid for finite transfers of energy and entropy
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Systems A and B are initially in SES and interact directly without other effects by
exchanging a finite amount E4 78 of energy. Such exchange can occur only if there is also an
entropy S48 transfer, at least S47%|,,;, but no more than S4=5|

Imax:*

© 2024 Gian Paolo Beretta @MIT 2.43 Advanced Thermodynamics Slide 05.02



Review of basic concepts:
Work interactions
Adiabatic process

Non-Work interactions
Heat interactions

System A R System B
Initial SES A, [ | Initial SES B,
at T 05 at TP
Final state A, Final state By
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Review of basic concepts: types of interactions:
Work

Work interaction: when energy is exchanged with no exchange of entropy nor
amounts of constituents. The exchanged energy is called work, denoted by
W+ instead of E<

— _ «— _ —
E12 - I/Vu — _I/Vlz
— _
S, =0
Energy and entropy balances for a system A experiencing only a work interaction
' A v A A—
E) -k =W,
A A A
S, =8, = (Sirr )12

Adiabatic process: a process whereby the system experiences only work
interactions (for example, a weight process may be adiabatic)
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Review of basic concepts: types of interactions:
Non-work and Heat

Non-work interaction: if there is an exchange of entropy or constituents (usually
ther is also an exchange of energy)

S5 #0

Non-adiabatic process: if there are some non-work interactions

Heat interaction: a limiting case of a non-work interaction with no exchange of

constituents in which the energy exchanged is entirely dicln g ble from
work. It occurs between two system initially in stable equilibrium states with
A _ B _
=T =T,

« It entails an exchange of both energy and entropy between the two systems,
such that
«— “—
E12 — TQSIZ
The exchanged energy is called heat, denoted by the symbol Q< instead of E<

QE — TQS;;
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Review of basic concepts: Heat interactions:
when is the energy exchanged entirely distinguishable from Work?

The cyclic engine X intercepts the energy exchanged
between A and B and tries to separate part of it as work.

(5E X—B
System A ’ i System B
5E A—>X 5 X 5B
0 > Cyclic "

Initial s.e.s. Al Initial s.e.s. Bl

A X engine X

£
Work 2

Energy and entropy balances for X, A and B
(assuming reversible processes),

and Gibbs relations for A and B: get 1—>X 1
\NE / (SZ: Yi

The max fraction of the exchanged
0=gEA>X _swX=>G _ spX—=B energy that can be separated as
work is negllglble (<< 1)only in the

{ sgAX _ —dE4 = 1454 — TAssA>X [t = el
e =it
—Al<<1
| 0EX8 —dE® = 1848 = 1B a5 X8 I

This condition defines therefore

the heat interaction.
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Review of basic concepts: Heat interactions
is the definition of Heat compatible with
the notions we learn in Heat Transfer

The strict definition of heat interaction just given may appear in contrast with the
common notion that calls heat transfer the exchange of energy between
systems at different temperatures.

Heat Transfer

« The contact between two bodies at different temperatures produces
nonequilibrium states in both systems

« To study these nonequilibrium states, we model each body as a continuum of
infinitesimal volumes, and assume that each is in a state not to far from a
s.e.s. (local quasi-equilibrium assumption)

« The temperatures of two adjacent volume elements differ only slightly,
therefore they interact via heat interactions

« We speak of temperature field within the two bodies

Subsystems
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Review of basic concepts: Heat interactions
steady state heat transfer requires non-equilibrium

Infinitesimal volume in a nonequilibrium state.
Here the entropy needed to sustain the steady state 1s generated by irreversibility

Assumption of states not too far Assumption of states not too far
fromtheses. at 7(x) | | , , from the s.e.s. at 7{x+dx)
Energy balance at > N d / Entropy balance at
teady state: Q :
steady state . | s-teady statc.e.
b e O lay_ o0 0
=0 =0
x —dx X X+ dx x + 2dx

The infinitesimal volume 1s

1n a state close to a s.e.s.:

. T(x)=T(x+dx) )
T T(x0)T (x + dx)
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Review of basic concepts: Heat interactions
steady state heat transfer requires non-equilibrium

The infinitesimal volume 1s
1n a state close to a s.e.s.:

S
\\i\ \ ) / dSm _ I'(x)—T(x+dx) Q
& & T'(x)T(x+dx)
e O dT O
7(x) 7 (x + dx) ST dx
X X +dx
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Review of basic concepts:

First and second law
efficiency

in
heat engines
heat pumps
refrigeration
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First and second law efficiencies: £ and .S eXChangeS between two reservoirs
Clausius inequalities impose irreversibilities in at least one

Reservoir A Reservoir B
5EA—>B
Initial SES Al SE Initial SES B1
at Ty 0.5 at T
Final SES A, Final SES B,
5EA—>B 5EA—>B
— 55478 — 554 < 65478 <8478 1§58 =
Ty 2434 = 2B,3B | p

Impossible to operate reversibly.
Must have generation of S either in A or B or both.
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First and second law efficiencies: £ and .S eXChangeS between two reservoirs
Interposing a third system makes reversibility possible

05X = §8§%X—=B _ §84-X
Reservoir A S pAoX Cyeclic " Reservoir B
5 Machiner >
Initial SES A; oy X Y o Initial SES B,
at T'y 05 l 05" at Tp
Final SES A, IWX= = §pA=X _ §pX—B Final SES B,
5EA—>X 5EX—>B
_ 55A—>X < 55A—>X + 55“)(; _ 55X—>B _
Ty 2434 2B,3B [

The machinery can operate reversibly, by exchanging less energy with the
reservoir at lower temperature than it exchanges with the reservoir a higher
temperature. The difference is balanced with a work interaction (no entropy
exchange).
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First and second law efficiencies: Heat engine between two thermal reservoirs

EzA _ElA :_QA%
S S =g
QA—> - TASA—>

SA_> QA—)

'] e @
EZB _EB = QB<— Wrev
Si=8T =8
QB% = TBSBF

Balance equations for reversible M

OZQA—) _QB("— _W'rev
OZSA_> _SB<—

from which

Wrev :SA%(TA _TB)>O
SA->=SB<-
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Hot reservoir

Ry, 1

O QAT

Useful

effect: W

Op, Op/Ty Iy
Environmental
! reservoir RB’ TB
T
W= QA [l_;J _TB Sirr
A
= i 75
NN LA
0, T, 0
o W
T= g3 =
TA

TH Sirr

==

ol

1_733]
I,

EZA _EA :_QA—>
S{I_SA :_SA—>
QA—) ZTASA—)
SA—)‘ QA—>
| , —]
B B¢«
s* | 0 /3@> W
EéB _EB =QB(—
S%—S]B w SBB<—
Q = =TBS =

Balance equations for irreversible M
0=84"-8°<+8,_

from which

W =87 (0, —T) 8. <

Irr rev
A— B«
ST +S8, =8

9

<
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First and second law efficiencies: Refrigeratﬂr between two thermal reservoirs

EzA _EA — QA(—
Sy -8 =854
QA% - TASAe

SA(— ﬁ

?(_\2

SB—)

EB _EB = B—
5223 ~ 87 = —gB*
QB% = TBSB%

EzA _EA = QA(_ Environmentgl RA9 ]'1'4
Séfi _SlA _ SA(— reservoir
A« A«
Q" =T1,5 Q4 OAT,
A«
SA(—
Q | Useful
I M | effect: QB’ QB/ d; B
SB—> B—
Q RB> TB
Eff _EB = _QB—> Wrev
S5 -8 =-8% 0, W TSy
QB_>=TBSB_) (T,/Ty=1) (T,/Tp~1)
car Q; — 1 _ TA TH S irr
Balance equations for reversible M W {TA_ ] ry=T,w
O=_QA<—+QB—>+VV}€V TB
=G . —Q;(l_TAJ
from which |, = Oy = T
H/rev = SB_> (TA - TB) >0 o Q;;rev Wwe W<—
SAF = SB% 1 TASin'
W(—
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Balance equations for irrevers

{0 =0+ 0" 4w

0==S%“+8""+S_
from which

{W =i R O

et

ible M

. Sl
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First and second law efficiencies: Heat pump between two thermal reservoirs

S5 —SF =84¢
QA<— — TASA<—
SA(—

0 ‘

SB—)

QB—) - TBSB—)

Balance equations for reversible M

O = _QA(— +QB—> 4 ereV
from which

rev

W, =S*(T,~T,)>0
SA(— — SB—)

C

M
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oP|

Environmental

reservoir RB’ TB
Q = w TB Sirr
Al = =
(I-Tp/T,) (1-T5/T,)
= Q; = 1 - TA TB Sirr
p.cal. W<— o & TA _TB W(—
TA
p.cal. QZrev - W(—
W(——

E;I _EA - QA<—

S{I _SIA - SA<—

QA(— — TASA<—
QA<—

SA(— ‘

M

SB—>

EzB _EB = _QB—)
S =8 =57
QB—) = TBSB—)

Balance equations for irreversible M

{OZ_Q/R— +QB—> W

f=—S4 g LS

|

from which
W= SA%(TA _TB)+TBSirr > I/Vrt“:v
SA(— —Sm — SB—)
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Review of basic concepts:

Experimental measurement
of stable-equilibrium properties
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Experimental measurement of SES properties:
thermometer

Thermometer: It is a system for which the temperature is easily readable on a
scale.

If a thermometer B is placed in contact with a system A and we wait for mutual
equilibrium to be reached, T8 = TA.

B

The temperature read by thermometer B
is equal to that of system A, regardless of
the details of system A.

=

~
oy
I

~
|D;
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Experimental measurement of SES properties:
manometer

Manometer: it is a system for which the pressure is easily readable on a scale.

If a manometer B is brought into mutual equilibrium with a system A, through a
piston or a movable interface, with a system A, pB = pA.

The pressure read by manometer B is
equal to that of system A, regardless of
details of system A.

=

NOTE: It can be proved (pp.158-159 of G&B) that the pressure p is equal to the
force per unit area exerted by the system on the walls confining its constituents in
the region of space with volume V.

amM dA
D= gam “E%p bL g

dA
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Pressure vs force per unit area

O
M
O ; I
(571} -
M _
weight
SES with process SES with
T, p, | T'+dT, p+dp, p+du
S, E,V,n, B reversible | S, E+dE, V +dV,n, p
Energy balance for the weight process (reversible: dS = 0):
M
dB|gng = —Mgdz = —fdV  where f=—2 dV =adz
a

and from the fundamental relation £ = E(S,V,n, ')

dE|snpg = —pdV  where p=— (8_E>
OV ) snp

At SES, the pressure p is equal to the force per unit area exerted by the
system anywhere on the walls confining its constituents in the volume V.

If the state is not a SES, we can still use the manometer to measure the
force per unit area at various locations on the walls, but in general it may
differ from location to location. Pressure is not defined because there is no
fundamental relation.
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Experimental measurement of SES properties:
heat capacities

Heat capacity at Heat capacity at
constant pressure: constant volume:
A (8Hj _ Mg(—Az) o (an _ Mg(-A2)
r=lar) © v=lar )
0T ) ,n AT oT Jy n AT
M}

)
)

™ @2
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Enthalpy and heat capacity at constant pressure

From the fundamental relation, the Gibbs relation, the definition of enthalpy, and
its partial derivatives:

E=E(S,V,n)

dE = TdS — pdV + - dn

H=FE+plV

dH =dE+d(pV)=TdS +Vdp + u-dn

H = H(S, p,n) ) Eliminate S, to obtain:

T:(aHj _T(S. p.1) — H=H(T,p,n)
p.n

oS OH
—  C.=| == —C (T, p,n
p (ﬁij,n »(T,p,n)
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Heat capacity at constant volume and equation of state

From the fundamental relation and its partial derivatives:

—
E=E(S,V,n) Eliminate S, to obtain:
— E=E(T,V,n
T:[Z_@ ST rm (aE )
V.n — CV = (—j = CV (T, V, n)
oF — oT V.n
I'= g .- - T(S’ v, n) Eliminate S, to obtain:

-

oE
oV

j =p(S,V,n) 1[81/
S.n &y =

— V =V(T, p,n) Equation of state

=a,(T, p,n)
P P
A\ar)

KT:—l v :KT(T,p,n)
4 T,n

oT
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Equation of state

The equation of state

V=V(T, p,n)

has the advantage that only easily measurable properties appear.
Its differential is

(@v), = PN ar+| L dp =Va ,dT —Vipdp
p,n P )T n

1(8Vj . 1(6V]
o, =—| — T=——| —
P yor p,n v 5]? 7,n

 The coefficient of isobaric expansion expresses the percentage increase
in volume resulting from an increase in temperature at constant pressure.

 The coefficient of isothermal compressibility expresses the percentage
reduction in volume resulting from an increase in pressure at constant
temperature.

They are functions of temperature, pressure, and composition.

where we define
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Experimental measurement of SES properties:
Mayer relation, Joule-Thomson coefficient, sound speed, etc

Definitions of other SES properties and their respective relations
in terms of p, V, T, C,, Cp, v = C,/Cy, k1, Q.

VToz]% .
Cp—Cy = p Mayer relation
T
oT V(a, T — 1
T = (—) = (2 ) Joule—Thomson coefficient
8]? Hn Cp
1 [oV . . R
kg =—— | — isoentropic compressibility
V\op /g,
8p) v? ( op ) 1 v
2 .
c, == =—— | = = = speed of sound propagation
(3/) sm M\ /)g, prs  per 5

oT - T
cy = (—) _ PRr 29 Joule coefficient
Un CU/{T

aC 02 H 82V Bor
(a_zf)T,n - aTap)n - (87) A (a_T)
(3),.=7 (o)

NV ) o1’ ),
(5),..=~(57),. =% (3or)

P ) 1n oT o P V \opdTl ),
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Gibbs free energy and chemical potentials as functions of 7 and p

From the fundamental relation, the Gibbs relation, the definition of Gibbs free
energy, and its partial derivatives:

E=E(S,V,n)
dE =T1dS — pdV + u-dn
G=E-TS+plV
dG =dE—-d(IS)+d(pV)=-SdT +Vdp + u-dn
G =G(T, p,n)

oG
Hi = — :,ul-(T,p,n)

67/11' T '

,p.N

The chemical potentials are functions of temperature, pressure, and composition.
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Experimental measurement of SES properties:
partial pressures and chemical potentials

constituent i

_Dii
b ‘ e
;“eime;i,’}g Mutual stable equilibrium across the
only to = % semi-permeable membrane implies:
7

T =T;
wi(T, p,n) = (T, pis)

This measurement procedure
defines the partial pressure of
constituent i in the mixture.

MR .-

If we know the chemical potential of pure constituent i as function of
temperature and pressure, by evaluating it at the temperature and
partial pressure of the mixture we obtain the chemical potential of the
constituent i in the mixture.
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Summary of properties

Properties defined for all states (including SES and NES):

 Energy
* Entropy
 Volume E1S1V1 n

«  Amounts of constituents
« Availabilities

Properties defined only for SES (all of them):
 Temperature

* Pressure
« Chemical potentials I'p,nmH,G
« Enthalpy

« Gibbs free energy

Properties defined only for some SES (e.g., not for two-phase states):
« Specific heat at constant volume

« Specific heat at constant pressure C C o k

« Isobaric expansion coefficient A A S
« Isothermal compressibility coefficient
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Construction of the fundamental relation from measurements of
Ta Py Cpy RT, Cpa and Ni,s (through pz’i,s)

For SES’s for which these ... if we know them as functions of T, p and n we can
properties are defined reconstruct (by integration) the fundamental relation.

(e.g. single-phase states)...
~S=S(T,p,n)

=a, (T, p,n) )
ap_aP(T p.n) E=E(T,p,n) > S=S(E,V,n)
ZT:ZT(fp’n) - < V=V(T,pn) _ ¢
P P( PN G=G(T,p,n) <« H=H(S,V,n)
pi =i (T, p,n) . H=H(T,p,n)

For example, at fixed amounts n we can integrate these general relations:
(dE), =\C, - pVa, )dT +(pxp —Ta, )V dp
C

(dS) =7pdT—adep

(dH)p =C,dT +L-Ta, |Vdp
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Next:
Characteristic SES functions
from

Legendre transforms
of the fundamental relation
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Changing variables of the fundamental relation by means

Legendre transtform

Legendre transform of a function of a single variable
Consider a curve described by the convex or concave monotonic function

_oF

Legendre’s observation is that we can describe the same curve also as the
envelope of the family of its tangent lines, by the function that relates the
slope A of each tangent line to its intercept L at y = 0.

Since the F'(y) is convex or concave and monotonic, A = A(y) is monotonic

and hence invertible. Using its inverse, y = y()\), we find the Legendre
transform of F' = F(y)
L=LA) = F(y(A) — Ay(A)

Notice that the Legendre transform of L = L(\) is the original F' = F(y).
In fact, denoting the slope of its tangent line by 7 and its intercept by G,

n\) = g—i (?95 gi y(\) — A% =—y(\) = n=-y
G =G(n) = L(A(n) —nAn)
G(y) = G(=n) = LAy)+y AMy) = F(y(Aw)))—Ay) y(A(y))+y A(y) = F(y)

where we used y(A(y)) = y since y = y(A) is the inverse of A = A(y).
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0 ¥y
2
1
A
L(/{l)
L(A;)
L(A3)
Examples
F(y) = e’
L(A) =X—AlnA\
F(y) = 1y
LX) =1\
Fly)=1y-A-y
LA)=3A-4-A
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