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graphical proof of a more precise Clausius inequality 

valid for finite transfers of energy and entropy
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Review of basic concepts:

Work interactions
Adiabatic process

Non-Work interactions
Heat interactions
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Review of basic concepts: types of interactions:

Work
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Review of basic concepts: types of interactions:

Non-work and Heat

Slide 05.05



© 2024 Gian Paolo Beretta     @MIT 2.43 Advanced Thermodynamics

Review of basic concepts: Heat interactions:

when is the energy exchanged entirely distinguishable from Work?
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Review of basic concepts: Heat interactions

is the definition of Heat compatible with 

the notions we learn in Heat Transfer
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Review of basic concepts: Heat interactions

steady state heat transfer requires non-equilibrium
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Review of basic concepts: Heat interactions

steady state heat transfer requires non-equilibrium
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Review of basic concepts:

First and second law 
efficiency

 
in

heat engines
heat pumps 
refrigeration
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First and second law efficiencies: E and S exchanges between two reservoirs

Clausius inequalities impose irreversibilities in at least one
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First and second law efficiencies: E and S exchanges between two reservoirs

Interposing a third system makes reversibility possible
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First and second law efficiencies: Heat engine between two thermal reservoirs

© 2024 Gian Paolo Beretta     @MIT 2.43 Advanced Thermodynamics Slide 05.13



First and second law efficiencies: Refrigerator between two thermal reservoirs
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First and second law efficiencies: Heat pump between two thermal reservoirs
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Review of basic concepts:

Experimental measurement
of stable-equilibrium properties
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Experimental measurement of SES properties: 

thermometer

The temperature read by thermometer B 
is equal to that of system A, regardless of 
the details of system A.

AB TT =

B

A

Thermometer: It is a system for which the temperature is easily readable on a 
scale.

If a thermometer B is placed in contact with a system A and we wait for mutual 
equilibrium to be reached, TB = TA.
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NOTE: It can be proved (pp.158-159 of G&B) that the pressure p is equal to the 
force per unit area exerted by the system on the walls confining its constituents in 
the region of space with volume V.

B

AB pp =

A

Manometer: it is a system for which the pressure is easily readable on a scale.

If a manometer B is brought into mutual equilibrium with a system A, through a 
piston or a movable interface, with a system A, pB

 = pA.

The pressure read by manometer B is 
equal to that of system A, regardless of 
details of system A.

dA
dMgp =

dAdM
g

p
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Experimental measurement of SES properties:

manometer
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Pressure vs force per unit area
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Experimental measurement of SES properties:

heat capacities
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Heat capacity at 

constant pressure:
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From the fundamental relation, the Gibbs relation, the definition of enthalpy, and 
its partial derivatives:
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Eliminate S, to obtain:

© 2024 Gian Paolo Beretta     @MIT 2.43 Advanced Thermodynamics

Enthalpy and heat capacity at constant pressure
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From the fundamental relation and its partial derivatives:
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Eliminate S, to obtain:
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Eliminate S, to obtain:

Equation of state
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Heat capacity at constant volume and equation of state
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has the advantage that only easily measurable properties appear. 
Its differential is 

where we define

The equation of state
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• The coefficient of isobaric expansion expresses the percentage increase 
in volume resulting from an increase in temperature at constant pressure. 

• The coefficient of isothermal compressibility expresses the percentage 
reduction in volume resulting from an increase in pressure at constant 
temperature.
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They are functions of temperature, pressure, and composition. 
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Equation of state
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Experimental measurement of SES properties:

Mayer relation, Joule-Thomson coefficient, sound speed, etc
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From the fundamental relation, the Gibbs relation, the definition of Gibbs free 
energy, and its partial derivatives:
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The chemical potentials are functions of temperature, pressure, and composition.
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Gibbs free energy and chemical potentials as functions of T and p
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Mutual stable equilibrium across the
semi-permeable membrane implies:
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Multicomponent system

piip

ii
membrane 

permeable 

only to 

constituent i

Experimental measurement of SES properties:

partial pressures and chemical potentials

If we know the chemical potential of pure constituent i as function of
temperature and pressure, by evaluating it at the temperature and
partial pressure of the mixture we obtain the chemical potential of the
constituent i in the mixture.

This measurement procedure
defines the partial pressure of

constituent i in the mixture.
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Summary of properties

Properties defined only for SES (all of them):
• Temperature
• Pressure
• Chemical potentials
• Enthalpy
• Gibbs free energy

Properties defined for all states (including SES and NES):
• Energy
• Entropy
• Volume
• Amounts of constituents
• Availabilities

n,,, VSE

GHpT ,,,, μ

Properties defined only for some SES (e.g., not for two-phase states):
• Specific heat at constant volume
• Specific heat at constant pressure
• Isobaric expansion coefficient
• Isothermal compressibility coefficient

TppV CC  ,,,
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For SES’s for which these
properties are defined
(e.g. single-phase states)...

),,( nVESS =

),,( nVSHH =
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... if we know them as functions of T, p and n we can 
reconstruct (by integration) the fundamental relation. 

( ) ( ) dpVTpdTpVCdE pTpp  −+−=n)(

dpVdT
T
C

dS p
p

−=n)(

( ) dpVTdTCdH pp −+= 1)( n

For example, at fixed amounts n we can integrate these general relations:

Construction of the fundamental relation from measurements of
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Next:

Characteristic SES functions

from
Legendre transforms 

of the fundamental relation
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Changing variables of the fundamental relation by means 

Legendre transform
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