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Changing variables of the fundamental relation by means

Legendre transtform

Legendre transform of a function of a single variable
Consider a curve described by the convex or concave monotonic function

_oF

Legendre’s observation is that we can describe the same curve also as the
envelope of the family of its tangent lines, by the function that relates the
slope A of each tangent line to its intercept L at y = 0.

Since the F'(y) is convex or concave and monotonic, A = A(y) is monotonic

and hence invertible. Using its inverse, y = y()\), we find the Legendre
transform of F' = F(y)
L=LA) = F(y(A) — Ay(A)

Notice that the Legendre transform of L = L(\) is the original F' = F(y).
In fact, denoting the slope of its tangent line by 7 and its intercept by G,

n\) = g—i (?95 gi y(\) — A% =—y(\) = n=-y
G =G(n) = L(A(n) —nAn)
G(y) = G(=n) = LAy)+y AMy) = F(y(Aw)))—Ay) y(A(y))+y A(y) = F(y)

where we used y(A(y)) = y since y = y(A) is the inverse of A = A(y).
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Characteristic SES functions from

Legendre transforms of the fundamental relation in energy form

dE = TdS — pdV

E=E(SV,n) fundamental relation
+p - dn
F=F A= — dL = —ydA+---
(y;--) |y 9y | =L(\-) ydA +
B F=E-TS dFf = —-SdT — pdV
E=ESV,n) | S T — F(T,V,n) - dn Helmholtz free energy
G=F—(-p)V B
F=FT,Vin) |V —p =FE-TS+pV G = SdTi ngz Gibbs free energy
— G(T,p,n) g
B H=FE—(-pV dH =TdS+Vdp
E=ES,Vn) |V P _ H(S.p,n) - dn Enthalpy
G=H-TS
H=H(S,pn)| S T =FE-TS5+pV S _SdT_:_ V((iiﬁ Gibbs free energy
=G(T,p,n) H
Euz- =G — MiT;
B . ' =FE-TS5+pV dEu; = —SdT + Vdp :
G=G(T,p,n) | n; L4 g nady + - dn! osmotic free energy
= EuZ(T7p7 Mian/)
Fu=G—p-n
. =FE-TS5+pV dEu=-5dT + V dp
G=G(T,p,n) | n Im uom n-dp Euler free energy

= Eu(T, p,p)
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Maxwell relations
— (g—g) o= T(S,V,n) and p = — (aE

I v )
PE\ [ *E L (o) _(or
050V ). ~— \ovas), 95 ) yn  \OV ),
S

= — (8F>v,n = S(T,V,n) and p = — (a—F)T,n =p(1,V,n)

oT

PF \ [ OF ~ (o) _ (99
orov ) — \ovor ). ) yn \OV)rn

From H(S,p,n), T = (%_IS{)p,n =T(S,p,n) and V = (—H)S =V(S,p,n)

PHN _(PHY (V) (0T
0Sdp),. \opdS ), a5 p,n_ I ) sn

From G(T,p,n), § = = (%), = S(.p,n) and V = (%) = V(T.p,n)

0*G B 0*G N 8_\/ B 0S
oTop) -~ \ 9poT n oT o N ap
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From E(S,V,n),

From F(T,V,n),




Review of basic concepts:
Manipulations of SES functions

Jacobian determinants
cyclic relation
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Jacobian determinants

Given two functions f = f(z,y) and g = g(x,y) of the independent variables x and v,
the determinant of the Jacobian matrix has the properties

0, ()
o(f,9) oty Roule g, f) _0g. f) 9}, 9)

Az, y) (22) (%) O(z,y) Oy, x) I,z

Considering the particularly simple function ¢(z,y) = vy, for which (0¢/0z), = 0 and
(0g/0y), = 1, yields the identity

Nz, y)

o(f,y) ((91" )
= (== note also that =1
8(567:1/) ox Y 8(3373/)
If © = z(f) is the inverse of a function f = f(x) of a single variable only, their first
derivatives are one the inverse of the other, 2/(f) = 1/f'(z) or dz/df = —++—. The

df/dz
equivalent for

the {x:x(f,g) of {fzf(x,y). 8(x,y):1/a(f>9)

inverse | y =y(f,g) system | g=g(z,y) ° o(f,9) O(x,y)

Choosing the simple function g(x,y) = y, the above yields x = z(f,y), which is the
inversion of function f = f(x,y) with respect to variable x, and proves the useful identity

(57),=1/(50),
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Jacobian determinants

For a function of a single variable f = f(z), if we change independent variable from z to
a, with x = x(a), so that f = f(z(a)), the chain rule reads

df B df dx
da dzda

The equivalent for a system of two functions in two variables when we change independent
variables from z, y to a, b, with x = x(a,b) and y = y(a, b), is

of.g) _0(f,9) 9(x,y) _9(f,g) 0z,y) 9} 9)
d(a,b)  0(a,b) O(x,y) J(z,y) d(a,bd) d(a,b)

In the example below, for the pair (x,y) we first choose (.5, p) and then (T,V'), to obtain
0’°E  0°FE (8T )

9,
(), A(T.p) _ (T,p)

dot(Hess(E)) 9S8  9S0V 25 /v
et(Hess = _ _ _
O’E 92FE (8_T) (ap) d(S,V) a(S,V)
ovVos  oV? oV /s oV
( a(T,p) 3(5,]?) . oT ap B T 1 )
- 9(S,p) O(S, V) (%%(W)s = Vi = implying C ny
R . a(T:p) 8(7;, V) B (@) (8_T> - ]i l - ;= aésottlge C—V — KU_S
| 9T, V) a(S,V) \ov/r\dS/v  Vkr Cy | identity
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Jacobian determinants

Recall (just used also in the previous slides) the following relations and definitions

dE=TdS — pdV +pu - dn
o= (5r),,~7(5)..
dH =TdS+Vdp+pu-dn

= (ar),.~ ().,

dVi]p =Va,dl — Vkpdp

1%
vy = (8T>
bn
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Cyclic relation

Using Jacobians it is easy to prove the cyclic relation

S 10U 105 that holds r=xz(y, 2)
(8_) <8_) <8_) = —1 between the y=1y(z,)
Yysz\0z/z 01/ y three functions z = z(z,y)

that represent the same surface f(x,y,z) = 0. In fact, expressing partial derivatives in
term of Jacobians and using their properties

—1 —1 —1
o\ 7\ o\
r r

0(z,2) 0y, x) 0(z,y) _ 0,2) Oy, x) 8(zy) _

0y, z) O(z,x) d(z,y)  I(z,x) d(z,y) Oy, 2)
For example, the cyclic relation for the three equivalent equations of state V- =V (T, p,n),
T =T(V,p,n), p=p(V,T,n) which represent the p—V—T surface for the SES of equal

given composition n, is oV oT 9
(a_T)p,n (@—p)m (%)T,& =1

As another example, using this cyclic relation and a Maxwell relation, to obtain

0 9, 0 9,
()ea (P GO0
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Mayer relation between C,, Cv, o, &7

To prove the relation
VTozf9

RT

C,=Cy +

Start from the definition of C, (drop n for simplicity)

&= (o), =1 (o), =" =7 o -

a(5,p) AT, V) 3(S,p)T<3V) __9(5p)

= wvaTy —aTv) . \ap AT, V)

Next compute the Jacobian and substitute

C
). @) 7 &

TV/{,T

a(Sap) L L T a _ CV . a}%
or,v) ; - TVky KA

(g—;)v _<§—€>T :; _V}iT
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Review of basic concepts:

availabile energy with respect to
various types of thermal reservoirs

availability functions
stability conditions

LeChatelier-Braun principle
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Available C€NErgy with respect to a
thermal reservoir with fixed volume and amounts

: O
System Reservoir Wik, m
A R —

Reversible g O /

Zmax(Ala A27 R)
State State S.e.s S.es ;Vfggz; m > 0if Wiy~ >0
A, > A, R,R

for AR < 0if I/Vé_> <0

Energy balance: (Ej — Ei') + (Ef — BEfY) = -W}5~
Entropy balance: (S3 — S7') + (S3* — ST') = Sgen
Fund.rel. for R:  EF — EF = Ty (SF — SF)
Eliminate (E£ — Ef) and (S5 — S{) from the above to yield:
Wis” = Bi' = By = T (81 = 85) = Tk Sgen = Wikdy = T Sgen

A A
Wik, = (%)) = (@%), =T7 -T9
where (QF)" = B4 — B — TR (S* — Sp) =T — T

we define the canonical availability function I' = F — Ty S

s2Rrev

Note that I' is minimum at state Ap with Tﬁ = Tg, where I'p = Fg
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Available C€NErgy with respect to a
thermal reservoir with fixed volume and amounts

Availability function I' = F — TR S:

R\A A 1A :OlfAleR
From (Q )1 =TI FR{>OifA17éAR
follows that I' > I'r for
any state of A that Et region of the states fixed values
of n and V

is not of MSE with R. - of thermodynamics

The minimum value I'p curve of the stable

is achieved only at equilibrium states

E ==
the MSE state Ap, 3 __E=E(SnV)
where I'p = FRp,
the Helmholtz free energy. e
ER:E(SR,R,V) i TR
Emin(n; V) — line E=TgS
I. '
| |
v : Fmin:FR:ER—TRSR
| |
| |
| |
_ | | g
S = {] 81 SR S
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Stability conditions deriving from the available energy with respect to a
thermal reservoir with fixed volume and amounts

If A isin state Ag (MSE with the thermal reservoir R), any possible variation
to another state A; is such that

ATA=T4-T4>0  where T%=F*—TyS4
1 R

For example, choose A; to be the neighbouring SES with AS4 = dS, and
the same values of V' and n, so that

AE* = EA(Sgp +dS,V,n) — B4 = TrdS + Ld*E*|y, +
This implies
AT = AEY —TrASY = 1d’Eyp+--->0 = d*EYya >0

Again, choose instead A; to be the neighbouring SES with AE4 = dE, and
the same values of V' and n, so that

AS* = SA(Egp +dE,V,n) — Sa = T—dE +1d*Svn
R

This implies
AT = AEY — TRASY = —1d*S%yp+--->0 = d*S*yn <0
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Stability conditions deriving from the available energy with respect to a
thermal reservoir with fixed volume and amounts

If V and n cannot change for system A, the partial Hessian of the fun-
damental relation S = S4(E,n,V) is simply the second order derivative

525\
tialHessian(S)|nv = | 705
partialHessian(S")|, v <8E2>n,v

The partial second-order differential evaluated at state Ag is

(dE)* <0

D A
d>S%|, v = dE - partialHessian(S)|p v |, - dE = (a S>
R

8E2 n,V

Which, repeated for reservoirs at different Tz’s proves an important general
concavity feature of the fundamental relation of any system A

%S 1 /0T 1
(), 20 = =(G), ~masr - o=

Similarly, from d?>E4|,y > 0 follows that in general, for any system A,

TEN S0 o (Z) sy
8‘92 n,V— aS 'n,,V—
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Stability conditions and
LeChatelier-Braun principle

The inequalities just seen, implied by stability conditions, give body to the
general LeChatelier-Braun theorem (or principle).
So far, we have seen that

(@_5) <0 = (a_T) >0
OFE? ) v — OFE ) v —

2E\" oT
aS n,V aS n,V

Combined with the idea that 7' is an escaping tendency for energy,
we may interpret this as follows.

If we change a SES to another SES with higher energy (or entropy), the
temperature increases, hence enhancing the systems’ tendency to give energy
(or entropy) away. The increase of temperature can be interpreted as an
attemp of the system to counteract the externally imposed increase of energy
(or entropy) by enhancing its tendency to give energy (and entropy) away.
If the system is initially in MSE with a reservoir R, an injection (subtrac-
tion) of energy pushes its state away from MSE, but the consequent increase
(decrease) of its temperature, away from the initial Tg, favors a spontaneous
process whereby the system exchanges energy (and entropy) with R so as to
return to MSE.
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Available CNErgy with respect to a
thermal reservoir with variable volume and fixed amounts

- O
System Reservolr W= -
—
A R Reversible g @), / ZmaX(Al’ A2’ R)
State State S.e.s S.e.s | weisht m > 0if W57 >0

process _ .
for AR =0 <0if Wi~ <0

Al - AZ R51_>R

Volume balance:  (V;* — V) + (V- V) =0

Energy balance: (E3 — Ei') 4+ (BEF — Ef) = —W5~

Entropy balance: (S5 — S7') + (S5 — ST') = Sgen

Fund.rel. for R:  Ej' — E{* = Tr (S3* — Si%) — pr (Vi — V1)
Eliminate (V5* — V/%), (B3 — EfY) and (S5* — ST7) from the above to yield:
Wiy~ = Bf — B3 — Tr(S{' = 85) + pr(VY" = V5") — T Sgen = Winse
Wisz, = (") — (7)) = of — o4

where (QFV)" = EA — B — TR (S* — S) + pr (VA = Vi) = 4 — o)
we define the availability function ® = F —Tr S +prV

s2Rrev

2rev TRS gen

® is minimum at state A with T4 = T, pg = pr, where ®r = Gg
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Stability conditions deriving from the available energy with respect to
changes in volume at fixed amounts

If A isin state Ag (MSE with the thermal reservoir R), any possible variation
to another state A; is such that

AP = o4 — P4 >0  where &4 = E4 - TRrS + prV4

For example, choose A; to be the neighbouring SES with AS# = dS, AV4 =
dV and the same values of n, so that

AEA = EA(Sgp 4+ dS, Vg +dV,n) — E5 = TrdS — prdV + 1d*E*|, + - --
This implies
AP = AEY — TRAS? + prAVA = 1 PE4, +--- >0 = d°E4, >0

Again, choose instead A; to be the neighbouring SES with AE4 = dE,
AV4 = dV and the same values of n, so that

1
ASA = SA(Er +dE,V,n) — S4 = —dE + 2Rqv 4 14254, + - -
TR 1R

This implies
AP = AEA — TRASA + ppAVA = —1@?S4, +--- >0 = d*S%, <0

© 2024 Gian Paolo Beretta @MIT 2.43 Advanced Thermodynamics Slide 07.18



Available CNErgy with respect to a
thermal reservoir with fixed volume and variable amount of *i”

= : ®
System £ Reservolr W2 -
= —
A = R Reversible g O / ZmaX(Ah A27 R)
State State S.es Ses | vt m >0 if Wiy~ >0

Amount balance:  (nf —ni) + (nk —nf) =0

Energy balance: (E3 — Ei') + (EF — Ef) = —W{5~

Entropy balance: (S3 — S7') + (S5 — ST') = Sgen

Fund.rel. for R:  E — ER = TR (SE — SI) + i (nf — nf)
Eliminate (ns — nl}), (E5 — Ef') and (S3* — ST') from the above to yield:
Wiy” = Ef' — By — Tr(S{' = S3) + ptir (ni) — i) — Th Sgen = Wigre
W12rev - (QRM);L4 - (QRM);4 - Tf - Téq

where (QRW)A = E4 — Ef — TR (8% — S3) + g (nf —nix) = T4 - T4

we define the osmotic availability function T = E — TR S — ,uz RN

TR S. gen

2rev

and note that T is minimum at state Ap with TR = Txr and ,uz R = iR
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Stability conditions deriving from the available energy with respect to
changes in variable amount of “i” at fixed volume

If A isin state Agr (MSE with the thermal reservoir R), any possible variation
to another state A; is such that

AY4 =14 -T%2>0  where Y4 =FE*—TrS* — prns

For example, choose A; to be the neighbouring SES with AS4 = dS, An# =
dn; and the same values of V' and the other n}, so that

AE* = EX(Sg+dS,V,nig+dn;, nj)—Ef = TrdS+pig dni+ 1d>E* |y +- -
This implies
AT = AEA~TrAS+pipAnf = 1d?Eypt--- >0 = d*E4 e >0

Again, choose instead A; to be the neighbouring SES with AE4 = dE,
An = dn; and the same values of V' and the other n}, so that

AS4 = SY(Er+dE,V,njg+dn;,n))— S5 = —dE—
Tg TR

dni+1d2S4 |y ++ -

This implies
AY? = AEA—TrAS 4+ pipAn = —1d?S v+ >0 = &S yw <0
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Available C€NErgy with respect to a
thermal reservoir with variable volume and all amounts

' @
System Reservoir WA= =
—>
A = R Reversible g D) /1 ZmaX(Ala A27 R)
State State S.e.s S.e.s | veiht m >0 if Wiy” >0

process _ .
for AR #=0 <0if Wi~ <0

Al - AZ R51_>R

V and n;’s balances: (Vi — V) + (ViF = V) =0 (ni —nj) + (nf —nl) = 0Vi
Energy balance: (Ei — Ef) + (B — EfY) = - W35~

Entropy balance: (S3 — Si') + (S5 — ST') = Syen

Fund.rel. for B: By — B = Tr (S — S7) — pr (V5" = Vi) + 3 pir (nje — nit)
Eliminate (V3 — Vi), (B — ET), (S5 — Sf) and all (nfy — nf)’s from the above to yield:
Wiy = Bi — By — Tr(S{ = S3) + pr(VY* = V3*) + Xpir (ni1 — i) — Tr Sgen
Wisray = (QRV”%);L4 - (QRV"‘);4 —Ef — &5
where ()" = B4 — Bt — Tr (4 — S2) + pr (VA = Vi) — X uir (0 — nf})
we define the Euler availability function == E —Tr S +prV — > . 1irn,

s2Rrev

= is minimum at Ap with Tﬁ =Tk, pR PR, ,qu ;g Vi, where =g = Fug
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Stability conditions deriving from the available energy with respect to
changes in volume and amounts

If A isin state Ag (MSE with the thermal reservoir R), any possible variation

to another state A; is such that
EA=284 _-Z2>0  where E*=FE*—TrS*+prV* — g n?

For example, choose A; to be the neighbouring SES with AS4 = dS, AVA =
dV, and An* = dn; Vi, so that

AEA = BEA(Sr+dS, Vg+dV,ng+dn)—E4 = Tr dS—pr dV +pug-dnt+-L1d?E4+- ..
This implies

=4 = ABA—TrAS 4 pprAVA—pp-An? = 1PE44 . >0 = d&*E* >0
Again, choose instead A; to be the neighbouring SES with AE4 = dE,
AVA =dV, and An* = dn; Vi, so that

1 1
—dE+2R gy — —

ASY = SAEp+dFE d dn)—S4 =
S S ( RT ,VR+ V,nR+ n) SR TR TR TR

,U,Rdn—i—%d2SA+ .
This implies
=4 = ABA—TRrASAprAVA—pp-An* = —1d*S*+- . >0 = d*S* <0
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Review of basic concepts: Consequences of the Maximum Entropy Principle:
Concavity of the fundamental relation

In a similar way, we can prove that the fundamental relation is concave
in all its independent variables, i.e., that in any SES the Hessian of the
fundamental relation S = S(E,n,V) is a negative semidefinite matrix

Hessian(S) =

s o
8E2 8E8n1
%S 0%S
0%S 0%S

on,0F 0On,0n;
%S 0%S
L OVOE 0Von,g

The full second-order differential of S = S(E,n,V) is

szE,n,V = (dE, dnl, 5 0

., dn,,dV') - Hessian(S) - (dE, dn,, ..

%S 0?5 T
OEOn, OFEOV
028 0928
8n18nr 87118‘/
%S 0?8
on?  On, 0V
%S %S
oV on, ov?z |
dn,, dV)T <0

From these properties it is possible to prove a number of general inequalities
that must be satisfied by stable equilibrium properties.
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Stability conditions deriving from the available energy with respect to
changes in the amounts at fixed temperature and pressure

If A isin state Ag (MSE with the thermal reservoir R), any possible variation

to another state A; is such that
E4=24_22>0 where =% =F"*—TrS*+prV* — g -n*

For example, choose A; to be the neighbouring SES with same temperature
T4 = Ty and pressure pf = pgr, and An? = dn; Vi, so that

AE* = E4(Tg,pr,ng + dn) — Ex
AS? = SA(Tg,pr,np + dn) — St
AVA = VAT, pr,ng + dn) — V!
and therefore also AE4 — TrASA + prAVA
= AG* = GNTr,pr,ng +dn) — G5 = pg - dn + 1d*G*|p, + - -
This implies
=4 = AGY — up - An?

L\, + >0 = dPGY7, >0
2 »P P
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Stability conditions deriving from the available energy with respect to
changes in volume and amounts at fixed temperature

If A isin state Ag (MSE with the thermal reservoir R), any possible variation

to another state A; is such that
EA=24_22>0  where ZE*=F" TS+ ppV* — up -n?

For example, choose A; to be the neighbouring SES with same temperature
TA =Ty, AVA =dV, and An* = dn; Vi, so that

AE* = E4(Tg, Vg +dV, ,np +dn) — Ex
AS* = S Tg, Vg +dV, ,ng + dn) — S
and therefore also AE4 — TRASA
= AF?A = FA(Tg, Vg +dV,ng+dn) —Fa = —prdV +pp-dn+ 1d>FA|p+- -
This implies
PFAp+-->0 = d&EFr>0
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Stability conditions and
LeChatelier-Braun principle

The inequalities just seen, implied by stability conditions, give body to the
general LeChatelier-Braun theorem (or principle).
So far, we have seen that

(@_5) <0 = (a_T) >0
OFE? ) v — OFE ) v —

2E\" oT
aS n,V aS n,V

Combined with the idea that 7' is an escaping tendency for energy,
we may interpret this as follows.

If we change a SES to another SES with higher energy (or entropy), the
temperature increases, hence enhancing the systems’ tendency to give energy
(or entropy) away. The increase of temperature can be interpreted as an
attemp of the system to counteract the externally imposed increase of energy
(or entropy) by enhancing its tendency to give energy (and entropy) away.
If the system is initially in MSE with a reservoir R, an injection (subtrac-
tion) of energy pushes its state away from MSE, but the consequent increase
(decrease) of its temperature, away from the initial Tg, favors a spontaneous
process whereby the system exchanges energy (and entropy) with R so as to
return to MSE.
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Stability conditions and
LeChatelier-Braun principle (more general statement)

Given a function A(z,y, z), write its first and second differentials with this notation

0A 0A
dA|,=A,dx+A,dy A, = (%)yz = A.(z,y,2) A, = <5’_y)xz =A,(x,y,2)
A,xaz A,xy

d*Al, = [dz dy [
2 =| ] AL A

} [35] = A, (dz)? + 24, dedy + A, (dy)?

9 2
ta= (08 =) aw=(00) = (%)

2 2
A= ()= (522, = (). (g0). = 4

The quadratic form can be rewritten (check by substitution) in the two canonical forms

d’Al, = A (d$+A’myd )2+)\ (dy)*>  where A\, =A,,—A (E)Q
z y LT A:m; y Yy y Yy Yy , LT Amm

2% A,xy 2 A,:cy 2
= X () + Ayy (dy+ 52 dz) " where A, = A — Ay (52
Yy Yy

Therefore, since the stability conditions must hold for arbitrary da and dy,

d?Al, >0 = {
| Ay 2, 20 Ay <A, <0

whereas d°A[, <0 = {
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Stability conditions and
LeChatelier-Braun principle (more general statement)

Whether d®A|, is positive semidefinite or negative semidefinite

A, A DA, A) (A, A)
0 < det(Hess(A)) — [Aez Aay| _ 04w Ay)  O(Aa, Ay
= e( eSS< >) ‘A,xy A,yy 8<$,y) 8(gj7y)
([ 0(Ae, Ay) 0(As,y) 0A, 0A , 0A ,
Y — == Bl === >
8<A,x7y> 8(93,&/) ( 8y )Am< ox >y ( 8y )A@ A’xw =0

0(A,,A,) Oz, A 0A , 0A
\ ('g(a;,A,yg)J) (;fx,yg;) B ( ox )Ay< (9yy)a:

Therefore, we can rewrite A\, and )\, as

M)Q _ det(Hess(A)) _ (8A,I>A

(agi;m)A,y Ay 20

Ao = Ago — A,yy(

Ayy Ayy Ox g
Az,\2  det(Hess(A)) 0A
b A4 () - S (o
Y 9y "TNA L Ao oy /A,
so that the stability conditions become
0A , A, A, A
(5:),2 (5),,2¢ (%), = (5),, <
d?A|, > 0= Ly LAy d?A|, <0 = Ly LAy

(52).2 (52),. 2 (F2). < (52, <
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Stability conditions and
LeChatelier-Braun principle (more general statement)

o T o o 1] 6, 8, [
oo a3 V|7 o] (), ()20 | ()= ~(2), 0
T T 1
> 5262 | T Ve Ve 2"
= (Cp,>Cy >0 = Ky >kKs >0
d*G|rp >0 Z; ny | ma | g1 | M2 (%) Z(gi) >0 (g—i)mz(g—i)mzo

We may interpret these inequalities as follows.

Assertion 1. If a system is initially in MSE with a thermal reservoir R and we perturb it to
another SES with higher (lower) value of an additive property x, the system responds by increasing
(decreasing) the conjugate potential A , that measures the escaping tendency of that property. As
a result, the system moderates/contrasts the effect of the imposed exchange of x by favoring a
spontaneous exchange with R with an opposite effect in an attempt to reestablish MSE.
Assertion 2. The system’s response is stronger when a higher number of equilibrium conditions
are disrupted by the perturbation. A perturbation that constrains the system to maintain a fixed
value of another additive property y produces a stronger counter reaction. In other words, it
results in a larger change in the potential A ,, which is conjugate to z, than a perturbation that

also induces a tuned change in y, designed to maintain the conjugate potential A , unaltered at its
MSE value.
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Stability conditions and

LeChatelier-Braun principle (example: air springs)

0A 0A 0A 0A
24|, = i > Y >
Al 202 |z |y | Az | Ay ((93:) <8x),y<0 (&g) <8y) <0
oT 0 Op Op
2B, > — ) >(=) > (== (=) >
FEn 20| n) 1V T —p (85)\/_ as)p—o (av>s— <av>T—0
= £>£>O = L > >0
CV_Cp_ Vks = Vkp —
= C,>Cy >0 = Kkr 2 ks 20
spring constant k
p
F = _ _
V =ax E pa k $0 x)
dF = adp = —kdx
—»
r=V/a
dr =dV/a ( 02
kr = T slow: T' constant
po AF_ adp _ dp @ 1| L ks _m G
T dr dVje AV VvV _1aV L ke ks Oy
v ap ke = & fast: S constant
\ V/{S
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