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Review of basic concepts:

the «Simple System» model
(macroscopic limit)

(many particle limit)

NOTICE: 
all the results reviewed so far 

hold for
LARGE as well as SMALL systems
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Review of basic concepts: micro & meso vs macro

rarefaction effects near walls at SE
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Review of basic concepts: micro & meso vs macro

rarefaction effects near walls at SE
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Review of basic concepts: simple-system model

assumes negligible effect of inserting and removing partitions
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Review of basic concepts: simple-system model (macroscopic limit) 

limiting assumption about the fundamental SES relation
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Review of basic concepts: simple-system model (macroscopic limit) 

proof of the Euler relation
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Review of basic concepts: simple-system model (macroscopic limit) 

main consequence of the Euler relation

Slide 09.08



© 2024 Gian Paolo Beretta     @MIT 2.43 Advanced Thermodynamics

Review of basic concepts: (small systems) 

specific properties depend on the total amount of constituents
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Review of basic concepts: (small systems) 

minimum work of partitioning
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Review of basic concepts: (small systems) 

minimum work of partitioning
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Basic simple-system models of 
stable-equilibrium properties 
of (macroscopic amounts of)

PURE SUBSTANCES:

Extensive, intensive, and specific properties
Homogeneous vs heterogoneous SESs

Phases
Gibbs’ phase rule

Phase diagrams (u-s-v, T-p, h-s, T-s)

Ideal solid
Incompressible fluid

Ideal gas
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𝑆, 𝑈, 𝑉, 𝑛1, . . . , 𝑛𝑟 , 𝑛 = ෍

𝑖=1

𝑟

𝑛𝑖 , 𝐻, 𝑚𝑖 = 𝑛𝑖𝑀𝑖 , 𝑚 = ෍

𝑖=1

𝑟

𝑚𝑖 , 𝐶𝑉 , 𝐶𝑝

For SES properties of simple systems, we adopt the following definitions.

𝑃𝑒 𝑈, 𝑉, 𝐧 = 𝜆𝑃𝑒 𝑈/𝜆, 𝑉/𝜆, 𝐧/𝜆 for any real 𝜆

A property Pe is extensive if the value of the SES function Pe(U,V,n) changes
by a factor  when the independent variables U, V, n, change by the same
factor 

Examples of extensive properties:

where n is the total number of moles, Mi the molar mass of constituent i, mi

the mass of constituent i and m the overall mass of the system.

SES relations valid within the simple system model: 

Extensive properties (definition)
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𝑠∗ =
𝑆

𝑚
, 𝑢∗ =

𝑈

𝑚
, 𝑣∗ =

𝑉

𝑚
, ℎ∗ =

𝐻

𝑚
, 𝑐𝑣

∗ =
𝐶𝑉

𝑚
, 𝑐𝑝

∗ =
𝐶𝑝

𝑚
, 𝑥𝑖 =

𝑚𝑖

𝑚

A specific property is defined by the ratio between the extensive properties.

𝜌𝑠 =
𝑆

𝑉
, 𝜌𝑢 =

𝑈

𝑉
, 𝜌 =

𝑚

𝑉
, 𝜌ℎ =

𝐻

𝑉
, 𝜌𝑐𝑣 =

𝐶𝑉

𝑉
, 𝜌𝑐𝑝 =

𝐶𝑝

𝑉
, 𝑐𝑖 = [𝑁𝑖] =

𝑛𝑖

𝑉

Where the asterisk (*) serves to distinguish mass specific properties from molar 
ones, if necessary. The asterisks are often omitted if the context and/or the 
dimensional homogeneity of the relationships make it clear that whether they 
refer to mass quantities..

For example, the following specific properties are important for applications:

𝑠 =
𝑆

𝑛
, 𝑢 =

𝑈

𝑛
, 𝑣 =

𝑉

𝑛
, ℎ =

𝐻

𝑛
, 𝑐𝑣 =

𝐶𝑉

𝑛
, 𝑐𝑝 =

𝐶𝑝

𝑛
, 𝑦𝑖 =

𝑛𝑖

𝑛
, 𝑐𝑝 =

𝐶𝑝

𝑛

SES relations valid within the simple system model: 

Specific properties (definition)
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𝑃𝑖 𝑈, 𝑉, 𝐧 = 𝑃𝑖 𝑈/𝜆, 𝑉/𝜆, 𝐧/𝜆 per ogni 𝜆 reale

Property Pi is intensive if the value of the SES function Pi(U,V,n) remains
unchanged when the values of the independent variables U, V, n, are all
changed by the same factor 

Examples of intensive properties:

𝑇, 𝑝, 𝜇1, . . . , 𝜇𝑟 , 𝜌 =
𝑚

𝑉
, 𝑦𝑖 =

𝑛𝑖

𝑛
, 𝑥𝑖 =

𝑚𝑖

𝑚

Moreover, all specific properties are intensive properties, according to our 

definition. Please notice: this definition may differ from other more restrictive 
ones used in the literature.

SES relations valid within the simple system model: 

Intensive properties and intensive state (definition)

We call intensive state the set of the values of all intensive SES properties

𝑦1, . . . , 𝑦𝑟 , 𝑣, 𝑢, 𝑠, ℎ, 𝑇, 𝑝, 𝜇1, . . . , 𝜇𝑟 , 𝜌, . . .

It is easy to show that the state, i.e., the set of values of all properties, is known if, 
in addition to the intensive state, the value of at least one extensive property (e.g., 
mass m) is known.
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• If, regardless of the subdivision, all partitions share the same intensive state, 
the state is called a homogeneous SES.

• If it is possible to subdivide the system in a way that not all partitions share 
the same intensive state, the state is called a heterogeneous SES, and each 
set, composed of all subsystems sharing the same intensive state, is called a 
phase.

Consider a simple system in a SES divided into many subsystems (approaching 
infinitesimally small) all in MSE: the various subsystems must have the same 
values for 𝑇, 𝑝, 𝜇1, . . . , 𝜇𝑟  but they can have different intensive states.

𝐸 = 𝐸(1) + 𝐸(2) + ⋯ + 𝐸(𝑞)

𝑉 = 𝑉(1) + 𝑉(2) + ⋯ + 𝑉(𝑞)

𝑛1 = 𝑛1
(1)

+ 𝑛1
(2)

+ ⋯ + 𝑛1
(𝑞)

       ⋮

𝑛𝑟 = 𝑛𝑟
(1)

+ 𝑛𝑟
(2)

+ ⋯ + 𝑛𝑟
(𝑞)

𝐸(1), 𝑉(1), 𝑛1
(1)

, … , 𝑛𝑟
(1)Phase (1):

Phase (2):

Phase (q):

System A: SES with



𝐸(2), 𝑉(2), 𝑛1
(2)

, … , 𝑛𝑟
(2)

𝐸(𝑞), 𝑉(𝑞), 𝑛1
(𝑞)

, … , 𝑛𝑟
(𝑞)

SES relations valid within the simple system model: 

Homogeneous vs heterogeneous SES, phases (definitions)
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The Gibbs’ phase rule asserts that of the 2+rq variables

𝜇𝑖
(1)

(𝑇, 𝑝, 𝐲(1)) = 𝜇𝑖
(2)

(𝑇, 𝑝, 𝐲(2)) =. . . = 𝜇𝑖
(𝑞)

(𝑇, 𝑝, 𝐲(𝑞))

but also the (q-1) r equalities

that represent the necessary conditions for MSE between the q different phases.

𝑇, 𝑝, 𝐲(1), 𝐲(2), . . . , 𝐲(𝑞)

which determine the intensive states of all phases, only a subset of r+2-q is 
independent, i.e., can be varied independently when the simple system must 
transition from an initial SES with q phases to an adjacent SES with the same q 
phases. The number F=r+2-q of independently variable intensive properties in the 
above set is called variance.

Note = This holds true if no chemical reactions are allowed within the system. If 
reactions are allowed, the variance is F=r+2-q-z where z is the number of 
independent chemical equilibrium conditions (see later). 

Indeed, not only the following q trivial conditions must hold

෍

𝑖=1

𝑟

𝑦𝑖
(𝑗)

= 1 for 𝑗 = 1, . . . , 𝑞

SES relations valid within the simple system model: 

Gibbs’ phase rule (proof)
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For a pure substance r = 1 : F = 3 - q

Single-phase (homogeneous) SES: q = 1  F = 2
To change the SES to a neighboring single-phase SESs we may vary T and p

independently, and we have 𝜇 = 𝜇 𝑇, 𝑝 .

Two-phase (heterogeneous) SES: q = 2  F = 1
To change the SES to a neighboring two-phase SESs we may vary only either T

or p independently, not both: their variations must be related by 𝜇1
1

𝑇, 𝑝 =

𝜇1
2

𝑇, 𝑝 from which follow the relations 𝑝 = 𝑝sat 𝑇 or 𝑇 = 𝑇sat 𝑝 .

Three-phase (heterogeneous) SES: q = 3  F = 0
There exist no neighboring SES with different values of T and p, and we have

𝜇1
1

𝑇, 𝑝 = 𝜇1
2

𝑇, 𝑝 = 𝜇1
(3)

(𝑇, 𝑝).

There cannot be SES of a pure substance with four or more phases.

and the q-1 MSE conditions :

But we have the q trivial conditions: 𝑦1
(𝑗)

= 1 for 𝑗 = 1, . . . , 𝑞

𝑇, 𝑝, 𝑦1
(1)

, 𝑦1
(2)

, . . . , 𝑦1
(𝑞)The variables are 2+q :  only 2 

variables pT ,
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SES relations valid within the simple system model: 

Gibbs’ phase rule (possible cases for a pure substance)

𝜇1
1

𝑇, 𝑝 = 𝜇1
2

𝑇, 𝑝 = . . . = 𝜇1
(𝑞)

(𝑇, 𝑝)
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p-T diagram for H2O (extended 
to high pressures and different 
forms of ice)

F=2 (single-phase SES)

F=1 (two-phase SES)

F=0 (three-phase SES)

)(sat Tpp =

SES relations valid within the simple system model: 

Gibbs’ phase rule (possible cases for a pure substance)
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Fig. 9.2 in Beretta, Termodinamica, 
Editrice Snoopy, Brescia, 2002. 
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(𝑑𝐸)𝒏 = 𝐶𝑝 − 𝑝𝑉𝛼𝑝 𝑑𝑇 + 𝑝𝜅𝑇 − 𝑇𝛼𝑝 𝑉𝑑𝑝

(𝑑𝑆)𝒏 =
𝐶𝑝

𝑇
𝑑𝑇 − 𝛼𝑝𝑉𝑑𝑝

(𝑑𝐻)𝒏 = 𝐶𝑝𝑑𝑇 + 1 − 𝑇𝛼𝑝 𝑉𝑑𝑝

Construction of the fundamental relation of a pure substance, 

within the simple system model, from 𝑇, 𝑝, 𝛼𝑝, 𝜅𝑇 , 𝐶𝑝 

For a pure substance may rewrite them in terms of mass specific properties

Recall these general SES relations, valid for SESs of any system:

(𝑑𝑢)n = 𝑐𝑝 − 𝑝𝑣𝛼𝑝 𝑑𝑇 + 𝑝𝜅𝑇 − 𝑇𝛼𝑝 𝑣𝑑𝑝

(𝑑𝑠)n =
𝑐𝑝

𝑇
𝑑𝑇 − 𝛼𝑝𝑣𝑑𝑝

(𝑑ℎ)n = 𝑐𝑝𝑑𝑇 + 1 − 𝑇𝛼𝑝 𝑣𝑑𝑝
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It is based on the assumption that the specific volume (v) is approximately 
constant, leading to
    𝜅𝑇 = 0, 𝛼𝑝 = 0, 𝑐𝑝 = 𝑐𝑣 = 𝑐 = 𝑐(𝑇)
The constitutive equations then become:

𝑑𝑢 = 𝑐(𝑇) 𝑑𝑇

𝑑𝑠 = 𝑐(𝑇)
𝑑𝑇

𝑇
𝑑ℎ = 𝑐(𝑇) 𝑑𝑇 + 𝑣 𝑑𝑝

𝑢 = 𝑢 𝑇

𝑠 = 𝑠 𝑇

ℎ = ℎ 𝑇, 𝑝

SES relations valid within the simple system model: 

Ideal (perfect) incompressible solid or fluid model

«Perfect» if 𝑐(𝑇) is constant:

𝑢 𝑇 − 𝑢 𝑇0 = 𝑐 𝑇 − 𝑇0

𝑠 𝑇 − 𝑠 𝑇0 = 𝑐 ln
𝑇

𝑇0

ℎ 𝑇, 𝑝 − ℎ 𝑇0, 𝑝0 = 𝑐 𝑇 − 𝑇0 + 𝑣 𝑝 − 𝑝0

𝑢 𝑇 − 𝑢 𝑇0 = න
𝑇0

𝑇

𝑐(𝑇) 𝑑𝑇

𝑠 𝑇 − 𝑠 𝑇0 = න
𝑇0

𝑇

𝑐(𝑇)
𝑑𝑇

𝑇

ℎ 𝑇, 𝑝 − ℎ 𝑇0, 𝑝0 = න
𝑇0

𝑇

𝑐(𝑇) 𝑑𝑇 + 𝑣 𝑝 − 𝑝0
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It is based on the assumption that the equation of state is 𝑝𝑉 = 𝑛𝑅𝑇 with 𝑅 =

𝑁Avogadro𝑘Boltzmann = 8.314
kJ

kmol K
  so that 

    𝜅𝑇 = 1/𝑝, 𝛼𝑝 = 1/𝑇, 𝑐𝑝(𝑇) = 𝑐𝑣 𝑇 + 𝑅
The constitutive equations then become:

𝑢 = 𝑢 𝑇

𝑠 = 𝑠 𝑇, 𝑝

ℎ = ℎ 𝑇

SES relations valid within the simple system model: 

Ideal (perfect) gas model

𝑑𝑢 = 𝑐𝑣 𝑇 𝑑𝑇

𝑑𝑠 = 𝑐𝑝(𝑇)
𝑑𝑇

𝑇
− 𝑅

𝑑𝑝

𝑝

= 𝑐𝑣(𝑇)
𝑑𝑇

𝑇
+ 𝑅

𝑑𝑣

𝑣

= 𝑐𝑝(𝑇)
𝑑𝑣

𝑣
+ 𝑐𝑣(𝑇)

𝑑𝑝

𝑝

𝑑ℎ = 𝑐𝑝 𝑇 𝑑𝑇

«Perfect» if 𝑐𝑣(𝑇) is constant:
𝑢 𝑇 − 𝑢 𝑇0 = 𝑐𝑣 𝑇 − 𝑇0

𝑠 𝑇, 𝑝 − 𝑠 𝑇0, 𝑝0 = 𝑐𝑝 ln
𝑇

𝑇0
− 𝑅 ln

𝑝

𝑝0

𝑠 𝑇, 𝑣 − 𝑠 𝑇0, 𝑣0 = 𝑐𝑣 ln
𝑇

𝑇0
+ 𝑅 ln

𝑣

𝑣0

𝑠 𝑣, 𝑝 − 𝑠 𝑣0, 𝑝0 = 𝑐𝑝 ln
𝑣

𝑣0
+ 𝑐𝑣 ln

𝑝

𝑝0

ℎ 𝑇 − ℎ 𝑇0 = 𝑐𝑝 𝑇 − 𝑇0
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SES relations valid within the simple system model: 

Ideal (perfect) gas model

For perfect gas behavior, it is possible to 
derive relationships that link 
temperatures, pressures, and specific 
volumes in the case of an isentropic 
transformation (i.e., where the entropy 
does not change):

in a broad range of relatively low 
temperatures, where the vibrational 
and electronic degrees of freedom are 
not activated, the following 
approximations are reasonable, 
depending on the structure of the gas 
molecules:

Monoatomic gas

𝑐𝑣 =
3

2
𝑅 𝑐𝑝 =

5

2
𝑅, 𝛾 =

𝑐𝑝

𝑐𝑣
=

5

3
= 1.67

Biatomic or aligned polyatomic molecules

𝑐𝑣 =
5

2
𝑅 𝑐𝑝 =

7

2
𝑅, 𝛾 =

𝑐𝑝

𝑐𝑣
=

7

5
= 1.4

Polyatomic non-aligned molecules

𝑐𝑣 = 3𝑅 𝑐𝑝 = 4𝑅, 𝛾 =
𝑐𝑝

𝑐𝑣
=

4

3
= 1.33

ൗ𝑝
𝛾−1

𝛾 𝑇 = const; 𝑇𝑣𝛾−1 = const; 𝑝𝑣𝛾 = const

𝑐𝑝 ln
𝑇2

𝑇1
= 𝑅 ln

𝑝2

𝑝1
⇒

𝑇2

𝑇1
=

𝑝2

𝑝1

𝛾−1
𝛾

𝑐𝑣 ln
𝑇2

𝑇1
= −𝑅 ln

𝑣2

𝑣1
⇒

𝑇2

𝑇1
=

𝑣1

𝑣2

𝛾−1

𝑐𝑝 ln
𝑣2

𝑣1
= −𝑐𝑣 ln

𝑝2

𝑝1
⇒

𝑝2

𝑝1
=

𝑣1

𝑣2

𝛾

Therefore, along an isentropic process of 
an ideal gas, we have:
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Two Gibbs-Duhem relations, one for each phase:
0 = 𝑆(1)𝑑𝑇 − 𝑉 1 𝑑𝑝 + 𝑛 1 𝑑𝜇 1 ⇒  0 = 𝑠(1)𝑑𝑇 − 𝑣(1)𝑑𝑝 + 𝑑𝜇(1)

0 = 𝑆(2)𝑑𝑇 − 𝑉 2 𝑑𝑝 + 𝑛 2 𝑑𝜇 2 ⇒  0 = 𝑠(2)𝑑𝑇 − 𝑣(2)𝑑𝑝 + 𝑑𝜇(2)

To change a two-phase SES at 𝑇 and 𝑝, and therefore with 𝜇 1 (𝑇, 𝑝) = 𝜇(2)(𝑇, 𝑝) 
to a neighboring two-phase SES with the same two phases, we must tune the 

changes in 𝑇 and 𝑝 to so as to keep the MSE condition 𝜇 1 (𝑇 + 𝑑𝑇, 𝑝 + 𝑑𝑝) =

𝜇 2 (𝑇 + 𝑑𝑇, 𝑝 + 𝑑𝑝) satisfied. Therefore, we need that 𝑑𝜇 1 = 𝑑𝜇(2), which 
yields

𝑑𝑝sat

𝑑𝑇
=

𝑠(2) − 𝑠(1)

𝑣(2) − 𝑣(1)
=

ℎ(2) − ℎ(1)

𝑇 𝑣(2) − 𝑣(1)

where we recall that for a pure substance 𝜇 = 𝑔 = ℎ − 𝑇𝑠, so the MSE condition 

of the initial state, 𝜇(1) = 𝜇(2) gives 𝜇(1) = ℎ(1) − 𝑇𝑠(1) = 𝜇(2) = ℎ(2) − 𝑇𝑠(2) 
and

𝑇 =
ℎ(2) − ℎ(1)

𝑠(2) − 𝑠(1)

SES relations valid within the simple system model: 

Clausius-Clapeyron relation (two-phase states of a pure substance)

(1)

(2)
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For example, consider two-phase SES with liquid and vapor
coexisting in MSE. Adopt the symbol 𝑥 to denote the vapor

mass fraction (steam quality)

𝑥 =
𝑛𝑔

𝑛
=

𝑚𝑔

𝑚

𝑛𝑔 = 𝑥𝑛
𝑚𝑔 = 𝑥𝑚

𝑛𝑓 = 1 − 𝑥 𝑛

𝑚𝑓 = 1 − 𝑥 𝑚

The specific volume, energy, enthalpy, and entropy of vaporization are
𝑣𝑓𝑔 = 𝑣𝑔 − 𝑣𝑓, 𝑢𝑓𝑔 = 𝑢𝑔 − 𝑢𝑓, ℎ𝑓𝑔 = ℎ𝑔 − ℎ𝑓, 𝑠𝑓𝑔 = 𝑠𝑔 − 𝑠𝑓

The MSE equality of chemical potentials of the two phases, yields
ℎ𝑓𝑔 = 𝑢𝑓𝑔 + 𝑝𝑣𝑓𝑔, ℎ𝑓𝑔 = 𝑇𝑠𝑓𝑔

The additivity of volume, energy, entropy, and enthalpy (additive in this
case because the two phases are at the same 𝑝), allows to write

𝑉
𝑉

g

f
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SES relations valid within the simple system model: 

properties of two-phase liquid-vapor states of a pure substance

𝑣 = 𝑥𝑣𝑔 + 1 − 𝑥 𝑣𝑓 = 𝑣𝑓 + 𝑥𝑣𝑓𝑔

𝑢 = 𝑥𝑢𝑔 + 1 − 𝑥 𝑢𝑓 = 𝑢𝑓 + 𝑥𝑢𝑓𝑔

ℎ = 𝑥ℎ𝑔 + 1 − 𝑥 ℎ𝑓 = ℎ𝑓 + 𝑥ℎ𝑓𝑔

𝑠 = 𝑥𝑠𝑔 + 1 − 𝑥 𝑠𝑓 = 𝑠𝑓 + 𝑥𝑠𝑓𝑔

𝑉 = 𝑉𝑓 + 𝑉𝑔

𝑈 = 𝑈𝑓 + 𝑈𝑔

𝐻 = 𝐻𝑓 + 𝐻𝑔

𝑆 = 𝑆𝑓 + 𝑆𝑔

𝑥 =
𝑣 − 𝑣𝑓

𝑣𝑓𝑔
=

𝑢 − 𝑢𝑓

𝑢𝑓𝑔
=

ℎ − ℎ𝑓

ℎ𝑓𝑔
=

𝑠 − 𝑠𝑓

𝑠𝑓𝑔
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Pictorial representation 
of the 𝑢 = 𝑢(𝑠, 𝑣)
surface for a pure 
substance. 

graphical representation of the SES fundamental relation valid within the simple system model: 

the u-s-v fundamental surface
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u-s-v diagram for H2O

graphical representation of the SES fundamental relation valid within the simple system model: 

the u-s-v fundamental surface (water)
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Fig. 9.1 in Beretta, Termodinamica, 
Editrice Snoopy, Brescia, 2002. 
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h-s diagram for H2O

(Mollier diagram)

graphical representation of the SES fundamental relation valid within the simple system model: 

the Mollier h-s diagram (water)
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Fig. 9.3 in Beretta, Termodinamica, 
Editrice Snoopy, Brescia, 2002. 
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p-v diagram for H2O

graphical representation of the SES fundamental relation valid within the simple system model: 

the p-v diagram (water)
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ቊ
𝑝c = 22.064 MPa
𝑇c = 373.95°C

൝
𝑝tp = 0.61166 kPa

𝑇tp = 0.01°C

From Fig. 9.4 in Beretta, Termodinamica, 
Editrice Snoopy, Brescia, 2002. 
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Approximate p-v diagram 

for H2O based on the van der 

Waals equation of state

𝑝 +
𝑎

𝑣2
𝑣 − 𝑏 = 𝑅𝑇

where 𝑣 = 𝑉/𝑛 and the values 

of 𝑎 and 𝑏 are obtained from

graphical representation of the SES fundamental relation valid within the simple system model: 

the p-v diagram according to the van der Waals model (water)
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From Fig. 9.5 in Beretta, Termodinamica, 
Editrice Snoopy, Brescia, 2002. 
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Review of basic concepts:

Exergies
and 

first and second law 
efficiencies

in 
energy conversion 

technologies
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𝜂II =
𝑊 + 𝑄𝐵 1 −

𝑇𝑜
𝑇𝐵

𝑄𝐴 1 −
𝑇𝑜
𝑇𝐴

Combined production of heat and mechanical energy (cogeneration, CHP)

𝜂I =
𝑊 + 𝑄𝐵

𝑄𝐴
= 1

RA, TA

RB, TB

M

QA

QB

W

N.B. : I = 1, even though the heat energy is less valuable (not all useful) 
and regardless of its temperature TB; II < 1, and varies with changes in 
temperature TB
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Review of basic concepts: Exergy and 2nd law efficiency in simple cogeneration
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Exergy associated with an interaction of mass flow in conditions 1

ሶ𝑊rev
→ = ሶ𝐸𝑥1 = ሶ𝑚 ℎ1 − ℎ𝑎 − 𝑇𝑎 𝑠1 − 𝑠𝑎

From the balance of energy and entropy 
(per unit time) for AM, the optimal 
equivalent mechanical power of  flow in 
conditions 1 can be determined; which is 
therefore the exergy per unit time 
associated with the flow in conditions 1

• To obtain the maximum power from the 
flow in conditions 1, the flow must be 
taken in a position 'a' in mutual 
equilibrium with the environment

M

A

Ta

1 a

ሶ𝑄𝑎 , Τሶ𝑄𝑎 𝑇𝑎

ሶ𝑚

ሶ𝑊rev
→

environment
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Review of basic concepts: Exergy of bulk flow interactions
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Exergy associated with an interaction of mass flow in conditions 1

ሶ𝑊rev
← = ሶ𝐸𝑥1 = ሶ𝑚 ℎ1 − ℎ𝑎 − 𝑇𝑎 𝑠1 − 𝑠𝑎

From energy and entropy balances (per unit 
time) for AM the optimal equivalent 
mechanical power of  flow in conditions 1 
can be determined, which is therefore the 
exergy per unit time associated with the 
flow in conditions 1

• The lowest power that is necessary to use 
in order to produce the flow conditions in 
1 starting from the condition 'a' in mutual 
equilibrium with the environment

M

A

Ta

a 1

ሶ𝑄𝑎 , Τሶ𝑄𝑎 𝑇𝑎

environment

ሶ𝑊rev
←
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Review of basic concepts: Exergy of bulk flow interactions

ሶ𝑚
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Image Credits
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Pictorial representation of the specific internal energy courtesy of Elias P. Gyftopoulos and Gian Paolo Beretta.
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