2.43 ADVANCED THERMODYNAMICS

Spring Term 2024
LECTURE 09

Room 3-442
Tuesday, March 5, 2:30pm - 4:30pm

Instructor: Gian Paolo Beretta
beretta@mit.edu
Room 3-351d
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Review of basic concepts:

the «Simple System» model
(macroscopic limit)
(many particle limit)

NOTICE:
all the results reviewed so far

hold for
LARGE as well as SMALL systems
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Review of basic concepts: micro & meso vs macro
rarefaction effects near walls at SE

YN Y Y T Rew paticies

per partition:

A A A A at SES
: ’ (micro or mesoscopic
: systems)
EA EA EA = 2 EA EA — 2 EA
nA n.z‘l nA: 2n/’l nA: 2n/1 SA > 2SA
Stable equilibrium states Nonequilibrium state Stable equilibrium state
: AN A A A
A SE}S&’ of 2A SESs of A S — SSES (E y vy, V )
o A E A with ﬁfed % with fixed
. small nt, V A SA _ SSES(2EA ZnA ZVA)
VA = oA ’ ’
~ Y
: Sses(2EA, 2t 2VA) >
SES of 2A A A A
NESofA 2 Sses(E%, 7, VE)
EA _ QEA 5 : =
ggn 84
>
254 g8 = 258
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Review of basic concepts: micro & meso vs macro
rarefaction effects near walls at SE

~ Y \ T ) r E Many particles

per partition:

/ / A A at SES
: : (macroscopic
: : systems)
EA EA EA= 2 EA EA=2EA G4 4 9gh
L m=2n m=2n =
Stable equilibrium states Nonequilibrium state Stable equilibrium state
" SESs of A A A A A
QEA EA with fixed S R SSES (E TV V )
’ SESs of 2A nt = 2nt A A o, A A
Wit; Exed va=2vA S — SSES (2E ) 2n ) 2V )
. I. large n®, VA

7 E | — T A A AN
1 SSEs(QE ,272, ,2V ) ~

SES of 2A A A A A

NES()fA“ s | QSSES(E T ’V )
____________ SES of A
e =3 — )
Simple System Model
assumes:
,(//’

e QSA, SA SSEs(QEA, 27’LA, 2VA) —

A QA . 9QA = A A /A

28" 8w 28 2 Ssps(E7,n™, V)

© 2024 Gian Paolo Beretta @MIT 2.43 Advanced Thermodynamics Slide 09.04



Review of basic concepts: Simple-system model
assumes negligible effect of inserting and removing partitions

Subdivide a system in a s.e.s. in A contiguous subsystems: subsystem A is
identical to system A (they have the same constituents and are both confined in a
region of space by external forces characterized by volume only), hence A has
the same fundamental relation as A (same functional relation). The states ofA
and A are different because different are the values of the volume, the amounts

and the energy.

System A: stable

equilibrium state with

System /1: stable E V n n
equilibrium state with 2> 2> 217 """ 4
System /1: stable E V n n
equilibrium state with 3> 2> 37" 1
System /1: stable E V n n
cquilibrium state with Z i I i 7 200> I

A — LS‘(E, V, n)

In general SA> 4 S4
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Review of basic concepts: Simple-system model (macroscopic limit)
limiting assumption about the fundamental SES relation

Simple system model assumption: the fundamental relation is a homogneous
function of first degree in all its variables

S{U,V.n)=AS{U/A,V/An/A) forany real A
U(S,V.n)=AU(S/A,V/An/A) foranyreal A

We denote the energy with the letter U instead of E and cal it internal energy.

As a consequence of the homogeneity, in addition to the Gibbs relation, which
holds in general

dE =TdS — pdV + ydny +-- -+ w,.dn,

we have the Euler relation

U:TS—pV—Fﬂlnl-F“'-Fﬂrﬂr

and the Gibbs-Duhem relation

0=38dT —Vdp +ndy +---+n,.du,
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Review of basic concepts: Simple-system model (macroscopic limit)
proof of the Euler relation

The condition of homogeneity of first degree in all variables

SV n

U(S,V,n) = AU()\ —

) for any real A (1)

implies the Euler relation

U=TS—-pV+pu-n

It also implies that the potentials conjugated with S, V', n are homogeneous of zero degree
in all variables, i.e., for any real A,

sV =7(5 5 5) psvm=a(355) wsve=a(53.5) @

Proof of (1): compute the partial derivative of Equation (1) with respect to A
=0 (550G D )G ) ) oG b ()

and let A\=1toget 0=U(S,V,n)—T(S,V,n)S+p(S,V.n)V —u(S,V.n) -n
Proof of (2): compute the partial derivatives of Equation (1) with respect to S, V, and
n, respectively.
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Review of basic concepts: Simple-system model (macroscopic limit)
main consequence of the Euler relation

A main practical feature is that for a simple system the fundamental relation can
be written in the form

oo U=U(S,V.n)=nu(s,v, )

U = lU(S,, V,n) = lU(ns,nv,, nyp,: -,ny,,.)
n n

ou U 10U Gm 10U onv 10U ony;

——— e —
on  p* nadS on Ty ni- On; On

U 1 1 1
= — Ts——pv+ Z,uly,:—— U-TS+plV — Z,ul =0
n® n -1 n* i=1

It means that if we double the overall number of particles keeping fixed relative
composition and equal specific volume and specific entropy, the energy doubles.
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Review of basic concepts: (Small SYStemS)
specific properties depend on the total amount of constituents

B
Fu=E—-TS+pV—u-n dBu=—SdT +Vdp—n-du ni:—(a“)
a,ui T\p,p

Fu = Fu(T,p, ) T,p,pu for a small system are all independent
a=e—Ts+pv—p-y dew = —sdT +vdp —y-du Zyz-zl Zdyz-:O

=eau(T,p, p) T,p,p for a small system are all independent

5 lS( ) ( ) (83) 1 Fu 1leu
s =— = —S(nu,nv,ny) = s(u,v,y,n — = =__
n n ) (BE5 1) 0¥, on/uvy N2 T nT
E 1 1
e=— = —FE(ns,nv,ny) =e(s,v,y,n) ( ) :——EU———eu
n n $,0,Y n
H 1 1
h=—=—H(ns,p,ny) = h(s,p,y,n) ( ) :——EU———eu
n n 8,0,y n
F 1 1
f=—=—-F(T,nv,ny) = f(T,v,y,n) ( ) = ——Eu- ——eu
n o n Ty n
G 1 1 1
— _G T7 ) — T7 ' 9 ( ) = ——hu=—
g=—=_G(Tpny) =9g(T.p.y,n) o) rp, T T
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Review of basic concepts: (Small SyStemS)
minimum work of partitioning

SESs with EESS with

fixed V, n 1Xed ‘./.’ n

A A partitions partition
V n
h with —, —
each with -, =

>
Cia S
+—>
S)x—)l — 9 _ S)x

1rr
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Review of basic concepts: (Small SYStemS)
minimum work of partitioning
Minimum work of partitioning into A identical compartments in identical SES:
SV n
Wél:l)\ B Wri\lgcl — EA — k= )\El (Xa Xa X) T El(Sa Van)
Minimum work to increment or decrement A\ by one:

1=-2+1 1= 1= 1=-A-1 1=
W)x—))\+1 - Wmin T Wmin Wmin - W L oW,

min

min A+1)—Xx  x—(A—-1) 7N
(LR (S

G WD ()

where we recall that we defined the Euler free energy
Fu=FE-TS+pV —u-n
So we see that its value for one of the A\ partitions equals the

minimum work to increase or decrease by one the number of partitions.
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Basic simple-system models of
stable-equilibrium properties
of (macroscopic amounts of)

PURE SUBSTANCES:

Extensive, intensive, and specific properties
Homogeneous vs heterogoneous SESs
Phases
Gibbs’ phase rule
Phase diagrams (u-s-v, T-p, h-s, T-s)

Ideal solid

Incompressible fluid
Ideal gas
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SES relations valid within the simple system model:

Extensive properties (definition)

For SES properties of simple systems, we adopt the following definitions.

A property P, is extensive if the value of the SES function P_,(U,V,n) changes
by a factor A when the independent variables U, V, n, change by the same

factor A
P,(U,V,n) = AP,(U/A,V/A,n/A) foranyreal A
Examples of extensive propertles

S,U,V,nq,... nr,n—znl,Hml—an,m zml,CV,C

=1 =1

where n is the total number of moles, M, the molar mass of constituent i, m,
the mass of constituent i and m the overall mass of the system.
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SES relations valid within the simple system model:

Specific properties (definition)

A specific property is defined by the ratio between the extensive properties.

For example, the following specific properties are important for applications:

S U V. H & G m G
Tt TR TR T T T T Ty
STE U= V= =0 = 0 = X S

m m m m m m m
s U m _ H Cy C, n;
ps =y pu=v,p =7 ph=7,pC =5, p6p = 77,6 = [Ni] =

Where the asterisk (*) serves to distinguish mass specific properties from molar
ones, if necessary. The asterisks are often omitted if the context and/or the

dimensional homogeneity of the relationships make it clear that whether they
refer to mass quantities..
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SES relations valid within the simple system model:

Intensive properties and intensive state (definition)

Property P; is intensive if the value of the SES function P,(U,V,n) remains
unchanged when the values of the independent variables U, V, n, are all
changed by the same factor A

P;(U,V,n) = P;(U/A,V/A,n/A) perogniAreale

Examples of intensive properties:
T m n; m;
N yrry ) = Yi = —,Xj = —
p, Uy Uy, P V Vi n L m
Moreover, all specific properties are intensive properties, according to our
definition. Please notice: this definition may differ from other more restrictive
ones used in the literature.

We call intensive state the set of the values of all intensive SES properties

{Y1r---;yr;v;u;S;h;T,p,,Ul,-..,,ur,p,...}

It is easy to show that the state, i.e., the set of values of all properties, is known if,
in addition to the intensive state, the value of at least one extensive property (e.g.,
mass m) is known.
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SES relations valid within the simple system model:

Homogeneous vs heterogeneous SES, phases (definitions)

Consider a simple system in a SES divided into many subsystems (approaching
infinitesimally small) all in MSE: the various subsystems must have the same

values for T, p, U4, . . ., ;- but they can have different intensive states.

« If, regardless of the subdivision, all partitions share the same intensive state,
the state is called a homogeneous SES.

 If it is possible to subdivide the system in a way that not all partitions share
the same intensive state, the state is called a heterogeneous SES, and each
set, composed of all subsystems sharing the same intensive state, is called a

phase.

System A: SES with Phase (1): EW y@ ngl), o n1(~1)
E=EW+E@D ..+ F@ Phase (2):  p@) y@ @ @
V=vDOiLy®@ ..1Ly0@ ’ L e
ny = ngl) + n§2) == oo e ngq)

n, = m(}) + n1(~2) Tt n7(~q) Phase (0): g V(q),ngq), ---»n7(~Q)
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SES relations valid within the simple system model:

Gibbs’ phase rule (proof)

The Gibbs’ phase rule asserts that of the 2+rq variables
T, p’ y(l), y(z), et y(Q)

which determine the intensive states of all phases, only a subset of r+2-q is
independent, i.e., can be varied independently when the simple system must
transition from an initial SES with g phases to an adjacent SES with the same ¢
phases. The number F=r+2-g of independently variable intensive properties in the
above set is called variance.

Indeed, not only the following g trivial conditions must hold
r
Zyi(j) =1 forj=1,...,q
i=1

but also the (g-1) r equalities

1 2
u (T, y®) = u(T,p,y®) =...= u{ (T, p,y@)
that represent the necessary conditions for MSE between the g different phases.

Note = This holds true if no chemical reactions are allowed within the system. If
reactions are allowed, the variance is F=r+2-q-z where z is the number of
independent chemical equilibrium conditions (see later).
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SES relations valid within the simple system model:

Gibbs’ phase rule (possible cases for a pure substance)

For a pure substancer=1: F=3-¢

The variables are 2+q: T, p, yl(l),yl(z), . .,yl(q) = only 2 T,p
0 . variables

But we have the q trivial conditions: ¥, =1 forj=1,...,q

and the g-1 MSE conditions : Hgl) (T,p) = uf)(T, p)=...= ,ngq} (T,p)

Single-phase (homogeneous) SES: q=1=F =2
To change the SES to a neighboring single-phase SESs we may vary T and p
independently, and we have u = u(T,p).

Two-phase (heterogeneous) SES: =2 = F=1
To change the SES to a neighboring two-phase SESs we may vary only either T

or p independently, not both: their variations must be related by ugl)(T,p) =
ugz) (T, p) from which follow the relations p = pg,+(T) or T = T, (p).

Three-phase (heterogeneous) SES: q=3 = F=0
There exist no neighboring SES with different values of T and p, and we have

uP(@,p) = 1P @,p) = 12T, p).

There cannot be SES of a pure substance with four or more phases.
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SES relations valid within the simple system model:

Gibbs’ phase rule (possible cases for a pure substance)

10

ice Il liquid critical point

P = Psat (T)

vapor

triple point

T (°C)

Fig. 9.2 in Beretta, Termodinamica,
Editrice Snoopy, Brescia, 2002.

p-T diagram for H,O (extended
to high pressures and different
forms of ice)

‘—I—’ F=2 (single-phase SES)
/ F=1 (two-phase SES)

o F=0 (three-phase SES)
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Construction of the fundamental relation of a pure substance,
within the simple system model, from T, p, Ap, KT, Cp

Recall these general SES relations, valid for SESs of any system:
(dE), = (Cp — pVap)dT + (pKT — Tap) Vdp
Cp
(dS), = ?dT — a,Vdp

(dH)p = C,dT + (1 — Ta,) Vdp

For a pure substance may rewrite them in terms of mass specific properties

(du), = (cp — pvap)dT + (pKT — Ta:p) vdp

Cp
(ds), = T dT — a,vdp

(dh)n = ¢pdT + (1 — Tap) vdp

© 2024 Gian Paolo Beretta @MIT 2.43 Advanced Thermodynamics Slide 09.20



SES relations valid within the simple system model:

Ideal (pertect) incompressible solid or fluid model

It is based on the assumption that the specific volume (v) is approximately
constant, leading to

kr =0,a,=0,c, =¢,=c=c(T)
The constitutive equations then become:

(du = ¢(T) dT u = u(T)
dT _

o .8

\dh = ¢(T) dT +v dp ’

«Perfect» if ¢(T) is constant:

fu(T) —u(Ty) = c (T —Tp)

( T

w(T) = u(Ty) = L ¢(T) dT S(T) —s(T) = ¢ lnTl
0 0

T —
s(T) — s(T,) = f c(T) g LA(T,p) — h(To, po) = ¢ (T —Tp) + v (p — po)
To
T
h(T,p) — h(To, po) = j c(T)dT +v (p — po)

Ty

A

A

\
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SES relations valid within the simple system model:

Ideal (perfect) gas model

It is based on the assumption that the equation of state is pI/ = nRT with R =
K]

NAvogadrokBoltzmann = 8.314 kmol K so that
kr = 1/p,a, =1/T, c,(T) = ¢,(T) + R

The constitutive equations then become:

(du = ¢,(T)dT u=u(T)
B dT  _dp s =s(T,p)
$ =c,(T) ﬂ + R @ «Perfect» if ¢, (T) is constant:
i dp (1) = w(Tp) = cp(T = To)
_ av ap T
(1) o (1) p s(T,p) — s(Ty, po) = ¢, lnT— e
\dh = ¢, (T)dT . o
18(T,v) —s(Ty,vy) = c,In—+ RIn—
To Vo
v p
S(vl p) — S(vo, pO) — Cp In—+ Cy In—
Vo Po
kh(T) — h(Ty) = Cp(T — To)
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SES relations valid within the simple system model:

Ideal (perfect) gas model

in a broad range of relatively low
temperatures, where the vibrational

and electronic degrees of freedom are
not activated, the following
approximations are reasonable,

depending on the structure of the gas

5—167
3_ .

molecules:

Monoatomic gas

2

3 5 c
Cv:_R Cp:—R, Yy =—=

Biatomic or aligned polyatomic molecules

7

5 7 Cp
Cy, ==R =R y=—=-=14

2 2

c, 5

Polyatomic non-aligned molecules

¢y, = 3R <cp=4R, Yy =

cp_4

— === 1.33)

cy 3

y—1

For perfect gas behavior, it is possible to
derive relationships that link
temperatures, pressures, and specific
volumes in the case of an isentropic
transformation (i.e., where the entropy
does not change):

y-1
T T 14
cpln—2=Rln& = _2:<p_2>
T, P1 T; P1
T v T v\t
cvln—2=—Rln—2 = —2:<—1>
Ty %1 Ty U3
[ P2 P2 <V1>y
cplIn—=-¢,In— = —=|—
%1 P1 P1 (%

Therefore, along an isentropic process of
an ideal gas, we have:

p ¥ /T =const; TvY™! = const; pv' = const
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SES relations valid within the simple system model:

Clausius-Clapeyron relation (two-phase states of a pure substance)

Two Gibbs-Duhem relations, one for each phase:

0=5SDar —vWdp + nWdu® = 0=sOdT —vDdp + du®
0=5S@dT —V@dp + n@du® = 0=s@dT —vPdp + du®

To change a two-phase SES at T and p, and therefore with uV(T,p) = u® (T, p)
to a neighboring two-phase SES with the same two phases, we must tune the
changes in T and p to so as to keep the MSE condition (T + dT,p + dp) =
1@ (T 4 dT,p + dp) satisfied. Therefore, we need that du® = du®, which
yields

dpee s@ —s® @ _p® (1)
dr — v@ — v T(p@ — pD)

where we recall that for a pure substance u = g = h — T's, so the MSE condition
of the initial state, u = u® gives u = p — s = ;,(2) = (2) — T5(2)
and

h(2) — ()
T =
s@) — ()
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SES relations valid within the simple system model:

properties of two-phase liquid-vapor states of a pure substance

For example, consider two-phase SES with liquid and vapor
coexisting in MSE. Adopt the symbol x to denote the vapor
mass fraction (steam quality)
_ng  my ng = xn ng=({1—-x)n

T T it = Jetii ms = (1 —x)m

The specific volume, energy, enthalpy, and entropy of vaporization are
Vig =Vg — V5, Upg =Ug—Us, hpg =hg—he,  Spg =355 —5f
The MSE equality of chemical potentials of the two phases, yields
hrg = Usg T DVrg,  hrg =TSpg

The additivity of volume, energy, entropy, and enthalpy (additive in this
case because the two phases are at the same p), allows to write

V=V+V v =2xv; + (1 —x)vf = vf + x5
U=Ur+ U, u = xug + (1 —x)ur = ur + xusg
H =H;+ H, h =xhy + (1 —x)hsf = hy + xhgg
S5=S5+5, s =xS;+ (1 —x)sf =S¢ + xSy

v—vfzu—ufzh—hfzs—sf

X =
Vrg Urg hrg Sfg
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Specific internal energy u

graphical representation of the SES fundamental relation valid within the simple system model:

the u-s-v fundamental surface

Pictorial represent
of the u = u(s, v)
surface for a pure
Gas substance.

/
/
I
/
/

/

Fig. 19.14 in Gyftopoulos, Beretta, Thermodynamics.

Foundations and Applications, Dover 2005.
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graphical representation of the SES fundamental relation valid within the simple system model:

the u-s-v fundamental surface (water)

u-s-v diagram for H,0O

1*3500
-a'sooo
2500
i'zooo

11500

u (K)/kg)

11000

{500

1-500

4 6 .'é Fig. 9.1 in Beretta, Termodinamica,
s (k)/kg K) Editrice Snoopy, Brescia, 2002.

_'2 0] 2
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graphical representation of the SES fundamental relation valid within the simple system model:

4000
3500
3000

2500

the Mollier /4-s diagram (water)

saturatio

saturated vapor

saturation curve
saturated liquid

h-s diagram for H,0O
o1 (Mollier diagram)

n curve

P = 0.61166 kPa
Typ = 0.01°C

pe = 22.064 MPa
T. = 373.95°C

2 4 6 8 10
Fig. 9.3 in Beretta, Termodinamica,
S (kJ/ kg K) Editrice Snoopy, Brescia, 2002,
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graphical representation of the SES fundamental relation valid within the simple system model:

the p-v diagram (water)

400

p-v diagram for H,0O

300

P = 0.61166 kPa
Typ = 0.01°C

pe = 22.064 MPa
T. = 373.95°C

100

0.001 0.01 0.1

3 From Fig. 9.4 in Beretta, Termodinamica,
(m°/kg) Editrice Snoopy, Brescia, 2002.
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graphical representation of the SES fundamental relation valid within the simple system model:

the p-v diagram according to the van der Waals model (water)

400
Approximate p-v diagram
for H,O based on the van der
300 Waals quatlon of state
(p+—)w-b) =T
- where v = V /n and the values
] :
Q 200 of a and b are obtained from
o
(el o 22.064 MP
T. = —— = 373.95°C
L ¢ 27Rb
O N |
0.001 0.01 0.1
3 From Fig. 9.5 in Beretta, Termodinamica,
(m / kg) Editrice Snoopy, Brescia, 2002.
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Review of basic concepts:

Exergies
and
first and second law
efficiencies

in

energy conversion
technologies
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Review of basic concepts: EXergy and 2"¢ Jaw efficiency in simple cogeneration

Combined production of heat and mechanical energy (cogeneration, CHP)

RA’TA rllz—W-I_QB:l
Qa
Qa W
v+ an(1-1)
i = T,
Qs o (1-7)
RB’ TB

N.B. : 5 = 1, even though the heat energy is less valuable (not all useful)
and regardless of its temperature Tg; 7, < 1, and varies with changes in
temperature Ty
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Review of basic concepts: Exergy of bulk flow interactions

Exergy associated with an interaction of mass flow in conditions 1

Qas

~

___________________

Qu/T,

environn

nent

« To obtain the maximum power from the
flow in conditions 1, the flow must be

taken in a position 'a' in mutual
equilibrium with the environment

WI'_éV = Exl = m|(hy — ha) — Ta(sl — Sa)]

From the balance of energy and entropy
(per unit time) for AM, the optimal
equivalent mechanical power of flow in
conditions 1 can be determined; which is
therefore the exergy per unit time
associated with the flow in conditions 1

© 2024 Gian Paolo Beretta @MIT 2.43 Advanced Thermodynamics Slide 09.33



Review of basic concepts: Exergy of bulk flow interactions

Exergy associated with an interaction of mass flow in conditions 1

. | * The lowest power that is necessary to use
" 4 in order to produce the flow conditions in

1 starting from the condition 'a' in mutual
equilibrium with the environment

i 17—
§ Wrev

~

Qa» Qa/Ta
environnent

WI‘(_GV = Exl — m[(hl - ha) - Ta(sl - Sa)]

From energy and entropy balances (per unit
time) for AM the optimal equivalent
mechanical power of flow in conditions 1
can be determined, which is therefore the
exergy per unit time associated with the
flow in conditions 1
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Pictorial representation of the specific internal energy courtesy of Elias P. Gyftopoulos and Gian Paolo Beretta.
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