2.43 ADVANCED THERMODYNAMICS

Spring Term 2024 LECTURE 10

Room 3-442 Friday, March 8, 11:00am - 1:00pm

Instructor: Gian Paolo Beretta beretta@mit.edu Room 3-351d

Exergies and first and second law efficiencies

in energy conversion technologies

© 2024 Gian Paolo Beretta @MIT 2.43 Advanced Thermodynamics Slide 10.02

Review of basic concepts: Exergy of bulk flow interactions

Exergy associated with an interaction of mass flow in conditions 1

• To obtain the maximum power from the flow in conditions 1, the flow must be taken in a position 'a' in mutual equilibrium with the environment

$$
\dot{W}_{\text{rev}}^{\rightarrow} = \dot{E}x_1 = \dot{m}[(h_1 - h_a) - T_a(s_1 - s_a)]
$$

From the balance of energy and entropy (per unit time) for AM, the optimal equivalent mechanical power of flow in conditions 1 can be determined; which is therefore the exergy per unit time associated with the flow in conditions 1

Review of basic concepts: Exergy of bulk flow interactions

Exergy associated with an interaction of mass flow in conditions 1

• The lowest power that is necessary to use in order to produce the flow conditions in 1 starting from the condition 'a' in mutual equilibrium with the environment

$$
\dot{W}_{\text{rev}}^{\leftarrow} = \dot{E}x_1 = \dot{m}[(h_1 - h_a) - T_a(s_1 - s_a)]
$$

From energy and entropy balances (per unit time) for AM the optimal equivalent mechanical power of flow in conditions 1 can be determined, which is therefore the exergy per unit time associated with the flow in conditions 1

Review of basic concepts: Exergy in heating and cooling bulk flows

Variation of exergy in heating / cooling a flow

Cooling. From energy and entropy balances (per unit time) for AM; the following is found

$$
M \rightarrow \qquad W_{\text{rev}}^{\rightarrow} = \dot{E}x_1 - \dot{E}x_2 = \dot{m}[(h_1 - h_2) - T_a(s_1 - s_2)]
$$

$$
\dot{W}_{\text{rev}}^{\rightarrow} = \dot{E}x_1 - \dot{E}x_2
$$

= $\dot{m}(h_1 - h_2) \left(1 - T_a \frac{s_1 - s_2}{h_1 - h_2} \right)$

Heating. From the balance of energy and entropy (per unit time) for AM; the following is found:

$$
\dot{W}_{\text{rev}}^{\leftarrow} = \dot{E}x_2 - \dot{E}x_1 = \dot{m}[(h_2 - h_1) - T_a(s_2 - s_1)]
$$

$$
\dot{W}_{\text{rev}}^{\leftarrow} = \dot{E}x_2 - \dot{E}x_1
$$

= $\dot{m}(h_2 - h_1) \left(1 - T_a \frac{s_2 - s_1}{h_2 - h_1} \right)$

Review of basic concepts: Exergy in heating and cooling bulk flows

Warning: the use of symbol Q in this case could be misleading, for it is used to represent the energy supplied to the flow, while the interaction is not heat, but a set of continuous heat interactions at temperatures between ${\sf T}_1$ and ${\sf T}_2$. The entropy supplied to the flow is equal to

$$
\frac{\dot{Q}_A}{T_{\text{lm12}}} \text{ where } T_{\text{lm12}} = \frac{h_2 - h_1}{s_2 - s_1}
$$

Review of basic concepts: Exergy of an hydraulic jump

$0 = \dot{m}(h_1 - h_2) + \dot{m}(w_1^2/2 - \overline{w_2^2/2}) + \dot{m}(gz_1 - gz_2) - \dot{W}$ $\dot{m}c(T_2 - T_1) = \dot{m}g(z_1 - z_2) - \dot{W}$ **Energy balance**

If the jump is not exploited (no work)

$$
c(T_2 - T_1) = g(z_1 - z_2) \rightarrow \frac{\Delta T}{\Delta z} = \frac{g}{c} = \frac{9.8}{4200} \approx \frac{1}{430} \frac{^{\circ}\text{C}}{\text{m}}
$$

Cascata delle Marmore, Italy, 165 m

Entropy balance

$$
0 = \dot{m}(s_1 - s_2) + \dot{S}_{irr}
$$

$$
\dot{S}_{irr} = \dot{m}c \ln \frac{T_2}{T_1} = \dot{m}c \ln \left(1 + \frac{T_2 - T_1}{T_1} \right) \approx \dot{m}c \frac{T_2 - T_1}{T_1} = \frac{\dot{m}g(z_1 - z_2) - \dot{W}^2}{T_1}
$$

If the jump is exploited in best way (maximum work)

$$
S_{\text{irr}} = mc \ln \frac{1}{T_1} = mc \ln \left(1 + \frac{1}{T_1} \right) \approx mc \frac{1}{T_1} = \frac{1}{T_1}
$$

If the jump is exploited in best way (maximum work)

$$
\dot{W}_{\text{max}}^{\rightarrow} = \dot{m}g(z_1 - z_2) \rightarrow \frac{\dot{W}_{\text{max}}^{\rightarrow} / \dot{m}}{z_1 - z_2} = g = 9.8 \frac{\text{m}}{\text{s}^2} = 9.8 \frac{\text{kJ/ton}}{\text{m}} = \frac{42 \text{ MJ/ton}}{4300 \text{m}}
$$

Review of basic concepts: Exergy in heating and cooling bulk flows

Cooling of a fluid using heat at a temperature different from the environment (refrigeration or absorption machine)

$$
\dot{Q}_A = \dot{m}(h_1 - h_2)
$$

$$
\eta_{\rm I} = \frac{\dot{m}(h_1 - h_2)}{\dot{Q}} = \frac{\dot{Q}_A}{\dot{Q}}
$$

$$
\eta_{II} = \frac{\dot{m}[(h_1 - h_2) - T_o(s_1 - s_2)]}{\dot{Q}\left(1 - \frac{T_o}{T_Q}\right)} = \frac{\dot{Q}_A \left[1 - T_o \frac{s_1 - s_2}{h_1 - h_2}\right]}{\dot{Q}\left(1 - \frac{T_o}{T_Q}\right)}
$$

Review of basic concepts: Exergy in heating and cooling bulk flows

$$
\dot{W}^{\rightarrow} = \dot{m}(h_1 - h_2) \left(1 - T_a \frac{s_1 - s_2}{h_1 - h_2} \right) + \dot{Q} \left(1 - \frac{T_a}{T_Q} \right) - T_a \dot{S}_{irr}
$$
\n
$$
\dot{W}_{rev 12}^{\rightarrow} = \dot{E}x_1 - \dot{E}x_2
$$
\n
$$
\dot{W}_{rev \dot{Q}}^{\rightarrow} = \dot{E}x_{\dot{Q}}
$$
\n
$$
\dot{W}_{rev \dot{Q}}^{\
$$

(1)

(2)

Review of basic concepts: Temperature of the equivalent heat interaction in heating / cooling for a liquid flow

The ratio between exergy and the energy content in heating / cooling of a liquid flow

$$
\begin{aligned}\n\dot{E}x_1 &= \dot{m}[(h_1 - h_a) - T_a(s_1 - s_a)] \\
\dot{E}x_2 &= \dot{m}[(h_2 - h_a) - T_a(s_2 - s_a)] \\
\Delta \dot{E}x_{12} &= \dot{E}x_2 - \dot{E}x_1 = \dot{m}[(h_2 - h_1) - T_a(s_2 - s_1)] \\
&= \dot{m} [c(T_2 - T_1) + (p_2 - p_1)/\rho - T_a c \ln(T_2/T_1)] \\
&= \dot{m}c(T_2 - T_1) \left[1 - \frac{T_a \ln(T_2/T_1)}{T_2 - T_1}\right] - \frac{\dot{m}}{\rho}(p_1 - p_2) \\
\Delta \dot{E}x_{12} &\approx \dot{Q} \left[1 - \frac{T_a \ln(T_2/T_1)}{T_2 - T_1}\right] \\
\dot{Q} \left[1 - \frac{T_a}{T_Q}\right] \n\end{aligned}
$$
\nEvery loss due to pressure drop in the duct. It is equal to the minimum pumping work. It is that the minimum number of the minimum number of the minimum number.

where

$$
T_Q = T_{\text{lm12}} = \frac{(T_2 - T_1)}{\ln(T_2/T_1)}
$$

drop in the duct. It is equal to the minimum pumping work. It is generally negligible with respect to thermal term.

Review of basic concepts: Temperature of the equivalent heat interaction in heating / cooling for an ideal gas flow

The ratio between exergy and the energy content in heating / cooling of a liquid flow

$$
\dot{E}x_1 = \dot{m}[(h_1 - h_a) - T_a(s_1 - s_a)] \qquad \dot{m} + \dot{m}
$$
\n
$$
\dot{E}x_2 = \dot{m}[(h_2 - h_a) - T_a(s_2 - s_a)]
$$
\n
$$
\Delta \dot{E}x_{12} = \dot{E}x_2 - \dot{E}x_1 = \dot{m}[(h_2 - h_1) - T_a(s_2 - s_1)]
$$
\n
$$
= \dot{m} [c_p(T_2 - T_1) - T_a c_p \ln(T_2/T_1) + T_a R \ln(p_2/p_1)]
$$
\n
$$
= \dot{m} c_p(T_2 - T_1) \left[1 - \frac{T_a \ln(T_2/T_1)}{T_2 - T_1} \right] - T_a \dot{m} R \ln(p_1/p_2)
$$
\n
$$
\Delta \dot{E}x_{12} \approx \dot{Q} \left[1 - \frac{T_a \ln(T_2/T_1)}{T_2 - T_1} \right]
$$
\n
$$
\dot{Q} \left[1 - \frac{T_a}{T_Q} \right]
$$
\n
$$
\dot{Q} \left[1 - \frac{T_a}{T_Q} \right]
$$
\n
$$
\dot{V} = \dot{V} =
$$

Review of basic concepts: Temperature of the equivalent heat interaction in heating / cooling for a boiling or condensing flow

The ratio between exergy and the energy content in heating / cooling of a liquid flow

$$
\dot{E}x_1 = \dot{m}[(h_1 - h_a) - T_a(s_1 - s_a)]
$$
\n
$$
\dot{E}x_2 = \dot{m}[(h_2 - h_a) - T_a(s_2 - s_a)]
$$
\n
$$
\Delta \dot{E}x_{12} = \dot{E}x_2 - \dot{E}x_1 = \dot{m}[(h_2 - h_1) - T_a(s_2 - s_1)]
$$
\n
$$
= \dot{m} [h_{fg}(x_2 - x_1) - T_a s_{fg}(x_2 - x_1)]
$$
\n
$$
= \dot{m} h_{fg}(x_2 - x_1) \left[1 - \frac{T_a s_{fg}}{h_{fg}} \right]
$$
\n
$$
\Delta \dot{E}x_{12} \approx \dot{Q} \left[1 - \frac{T_a}{h_{fg}} \right]
$$
\nHere we assumed negligible
\n
$$
\dot{Q} \left[1 - \frac{T_a}{T_Q} \right]
$$
\nwhere we assume drop.

$$
T_Q = \frac{h_{\text{fg}}}{s_{\text{fg}}}
$$

Review of basic concepts: Minimum exergy for low temperature heating a liquid or ideal-gas flow

Ratio between exergy and energy content for a liquid flow:

$$
\Delta \dot{E} x_{12} \approx \dot{Q} \left[1 - \frac{T_a \ln(T_2/T_1)}{T_2 - T_1} \right] \qquad \qquad \dot{m} \leftarrow \qquad \qquad \frac{1}{\dot{Q}}
$$

For example, for the heating of pressurized water from 60°C to 120°C (in an environment at 300 K)

$$
\frac{\Delta E x_{12}}{\dot{Q}} = 1 - \frac{T_a \ln(T_2/T_1)}{T_2 - T_1} = 1 - \frac{300 \ln(393/333)}{60} = 0.172
$$

For the heating of water from 20°C to 60°C (in an environment at 300 K)

$$
\frac{\Delta E x_{12}}{\dot{Q}} = 1 - \frac{T_a \ln(T_2/T_1)}{T_2 - T_1} = 1 - \frac{300 \ln(333/293)}{40} = 0.040
$$

Review of basic concepts: Exergy associated with a fossil fuel (definition)

 T_o and p_o standard: 25°C and 1 atm

Review of basic concepts: Exergy associated with a fossil fuel (in practice)

In the **second part of the course** we will prove that the exergy of a hydrocarbon C_kH_ℓ or coal, prior to its combustion, is within ±2.5% of the LHV of the fuel

 $\dot{E} x_{fuel} \approx -\dot{m} (\Delta h^o - T_o \Delta s^o)$ $\dot{Q}_{fuel} \approx -\dot{m}\Delta h^o = \dot{m} \text{ LHV}$ |T_o Δs

Where

 Δh^o The enthalpy of combustion T_o and p_o Δs^o The entropy of combustion T_o and p_o $LHV = -\Delta h^o$ lower heating value HHV is the higher heating value of the fuel **For all hydrocarbons:**

 $\frac{10}{2}$ / Δh^o | ≤ 0.025

Therefore, in practice, we can use the approximation:

$$
\dot{E}x_{\text{fuel}} \approx \dot{Q}_{\text{fuel}} \approx \dot{m} \text{ LHV}
$$

HHV = LHV + ℓ h_{fg, water} (T_o) for example for methane LHV = 50.06 MJ kg and $HHV = 55.54$ MJ kg ℓ is the number of hydrogens in the C_kH_ℓ molecule

for the details see chapter 31 of G&B, Thermodynamics, Dover 2005, Tab.31.7

Review of basic concepts: Lower heating values of some fuels

42 MJ correspond to:

Lift 1 ton of water up to 4300m Heat 1 ton of water of 10°C Evaporate 18 kg of water at p_{atm} Oxidizing 1 kg of oil Fission of 0.5 mg of uranium-235

The learning curve of fuel-to-power conversion technologies

The learning curve of fuel-to-power conversion technologies

 $\eta_{\rm II}$

Thermodynamic efficiency of the best-available mature technology for primary energy conversion to work or electricity

The learning curve of fuel-to-power conversion technologies

© 2024 Gian Paolo Beretta @MIT 2.43 Advanced Thermodynamics

Review of basic concepts: Power-plant philosophy of best available flame-based fuel-to-power conversion technology

Overall thermodynamic efficiency

64%

$$
\eta_{\text{II-overall}} = \frac{\dot{W}_{\text{electric}}}{\dot{E}x_{\text{fuel}}} = \eta_{\text{II-combustion}} \times \eta_{\text{II-thermal-cycle}} \approx 64\%
$$

Review of basic concepts: Power-plant philosophy of best available flame-based fuel-to-power conversion technology

^{© 2024} Gian Paolo Beretta @MIT 2.43 Advanced Thermodynamics Slide 10.21

Review of basic concepts: Power-plant philosophy of best available flame-based fuel-to-power conversion technology

The role of Thermodynamics? The role of Nonequilibrium?

- History tell us about the future:
	- By the end of this century, power plants will be 85% efficient.
- Thermodynamics tells us:
	- By burning fossil fuels in flames, we cannot exceed 70%.
	- The bottleneck is in the irreversibility of flame combustion.
- History tells us we will overcome that! How?
- **Additional Proceedings, pp. 165-177 (1992).** • We will gain a better control of fuel oxidation as it occurs or develop alternative oxidation paths that allow better control and less irreversibility,
	- We will gain better control of nonequilibrium states.
	- chemical kinetics models of heterogeneous and multicomponent systems. • We will improve our nonequilibrium fluid dynamics, transport phenomena,

Review of basic concepts: one way to get around the inherent irreversibility of flames is by oxidating the fuel in fuel cells

Integrating SOFC in Thermal Cycles (without CO2 sequestration) may yield: Fuel-Cell Rankine Cycle, 72% Fuel-Cell Combined Brayton-Rankine Cycle, 75%

Fuel-Cell Regenerative Brayton Cycle, 76%

Methods for the ALLOCATION

of **energy consumption** and **CO² production** in **combined heat and power (CHP) production**

and of **heat and/or power production** in **hybrid multi-resource facilities**

What fraction of the fuel consumed by a heat-and-power cogeneration facility should be allocated to the heat produced?

Why is it important?

The question is important in real estate, for buildings served by district heating systems where the heat is produced in CHP facilities.

Each country has its own specific certification process and criteria for evaluating the energy performance of residential buildings. In the United States, the Energy Performance Certificate (EPC)* or Home Energy Score* provides information about a building's energy efficiency and, therefore, it affects the building's commercial value. Among the parameters which determine the Home Energy Score is how much primary energy is consumed for heating.

*Similar indices adopted in various countries: **Italy**: Attestato di Prestazione Energetica (APE) **France**: Diagnostic de Performance Énergétique (DPE) **Germany**: Verbrauchsausweis **United Kingdom**: Energy Performance Certificate (EPC) **Australia**: Nationwide House Energy Rating Scheme (NatHERS) or Building Sustainability Index (BASIX) **Canada**: EnerGuide Rating System **Japan**: Comprehensive Assessment System for Building Environmental Efficiency (CASBEE) **China**: China Green Building Evaluation Standard (GBES) **India**: Energy Conservation Building Code (ECBC) or Star Rating for Energy Efficiency of Buildings

Allocation problem in Heat&Power Cogeneration: α_{W} **,** α_{O} **, partial efficiencies, and PES**

$$
PES = \frac{W/\eta_W^{\rm ref} + Q/\text{COP}_Q^{\rm ref} - F}{W/\eta_W^{\rm ref} + Q/\text{COP}_Q^{\rm ref}}
$$

Allocation problem in Heat&Power Cogeneration: *α***W,** *α***Q, partial efficiencies, and PES**

© 2024 Gian Paolo Beretta @MIT 2.43 Advanced Thermodynamics

Allocation problem in CHP: Incremental Electricity-Centered Allocation

Allocation problem in CHP: Separate Production Reference Allocation

Allocation problem in CHP: ${\bf Choice\ of\ reference\ values\ for\ \eta_w^{\rm ref}}$ and ${\bf COP_O^{\rm ref}}$ ref COP^+_Q

SPR method:

Fixed values set by some local Authority

Exergy method:

Fixed values set by Thermodynamics

Effectively takes as references Effectively takes as references $\eta_W^{\text{rel}} \approx 1$ $\qquad \text{COP}_Q^{\text{ret}}$
the REVERSIBLE heat engines!

$$
\eta_w^{\rm ref} \approx 1
$$

$$
\int_{W}^{\text{ref}} \approx 1 \qquad \text{COP}_{Q}^{\text{ref}} = 1 / \left(1 - \frac{T_{\text{env}}}{T_{Q}}\right)
$$

Allocation problem in CHP: "fair" reference values in a given local area

STALPR Method*: Self-Tuned-Average-Local-Productions-Reference

Adopt reference efficiencies

that are representative of the actual average efficiencies

 $\eta_{\mathrm{W}}^{\mathrm{loc}}$ $\boxed{\mathrm{COP_Q^{\,loc}}}$

of the energy production portfolio (typically the local area where the cogenerator itself is located) with which the resulting efficiencies of the cogenerator

[* G.P. Beretta, P. Iora, and A.F. Ghoniem, Energy, Vol. 44, pp. 1107-1120 \(2012\)](https://dx.doi.org/10.1016/j.energy.2012.04.047)

What fraction of the electrical energy produced in a hybrid solarfossil power plant should qualify as 'renewable electricity'?

Why is it important?

The question is important because several government programs (in the United States and in most other countries) provide economic incentives* for the production of electricity from solar, wind, and other renewable energy sources. In "hybrid facilities" where these renewable sources are combined/integrated with fossil fuels, the access to these incentives depends on how much of the produced electricity is recognized as renewable.

It is also relevant for multi-fuel power plants or hybrid CHP facilities.

*Examples: Investment tax credits Production tax credits Accelerated depreciation Cash grants Loan programs Grants and loan guarantees to agricultural producers and rural small businesses Renewable energy tax-credit bonds

<code>Allocation</code> problem in Hybrid Facilities: $\pmb{\beta}_\mathrm{F}\text{, }\pmb{\beta}_\mathrm{Q}\text{, }$ <code>partial efficiencies, and PES</code>

^{© 2024} Gian Paolo Beretta @MIT 2.43 Advanced Thermodynamics

Slide 10.39

<code>Allocation</code> problem in Hybrid Facilities: $\pmb{\beta}_\mathrm{F}\text{, }\pmb{\beta}_\mathrm{Q}\text{, }$ <code>partial efficiencies, and PES</code>

^{© 2024} Gian Paolo Beretta @MIT 2.43 Advanced Thermodynamics

Slide 10.40

Allocation problem in Hybrid Facilities: Incremental Fossil-Centered Allocation

Allocation problem in Hybrid Facilities: Separate Production Reference Allocation

Allocation problem in Hybrid Facilities: ${\bf Choice\ of\ reference\ values\ for\ }\frac{\bf{p}^{\rm ref}}{\bf{p}^{\rm ref}}$ and $\frac{\bf{p}^{\rm ref}}{\bf{p}^{\rm ref}}$

Exergy method:

Effectively takes as references Effectively takes as references $\eta_F \approx 1$ η
the REVERSIBLE heat engines!

$$
\eta_{\rm F}^{\rm ref} \approx 1
$$

$$
r^{\text{ref}}_{\text{F}} \approx 1 \qquad \eta^{\text{ref}}_{\text{R}} \approx 0.93
$$

Image Credits

Slide 19:

The learning curve of fuel-to-power conversion technologies © AIP Publishing LLC. All rights reserved. This content is excluded from our CreativeCommons license. For more information, see [https://ocw.mit.edu/help/faq-fair-use.](https://ocw.mit.edu/help/faq-fair-use)

Slide 21 and **Slide 22**:

Enthalpy versus entropy graph © Nova Science Publishers, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see [https://ocw.mit.edu/help/faq-fair-use.](https://ocw.mit.edu/help/faq-fair-use)

2.43 Advanced Thermodynamics Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.