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Review of basic concepts:

Exergies
and 

first and second law 
efficiencies

in 
energy conversion 

technologies
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Exergy associated with an interaction of mass flow in conditions 1

ሶ𝑊rev
→ = ሶ𝐸𝑥1 = ሶ𝑚 ℎ1 − ℎ𝑎 − 𝑇𝑎 𝑠1 − 𝑠𝑎

From the balance of energy and entropy 
(per unit time) for AM, the optimal 
equivalent mechanical power of  flow in 
conditions 1 can be determined; which is 
therefore the exergy per unit time 
associated with the flow in conditions 1

• To obtain the maximum power from the 
flow in conditions 1, the flow must be 
taken in a position 'a' in mutual 
equilibrium with the environment

M

A

Ta

1 a

ሶ𝑄𝑎 , Τሶ𝑄𝑎 𝑇𝑎

ሶ𝑚

ሶ𝑊rev
→

environment
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Exergy associated with an interaction of mass flow in conditions 1

ሶ𝑊rev
← = ሶ𝐸𝑥1 = ሶ𝑚 ℎ1 − ℎ𝑎 − 𝑇𝑎 𝑠1 − 𝑠𝑎

From energy and entropy balances (per unit 
time) for AM the optimal equivalent 
mechanical power of  flow in conditions 1 
can be determined, which is therefore the 
exergy per unit time associated with the 
flow in conditions 1

• The lowest power that is necessary to use 
in order to produce the flow conditions in 
1 starting from the condition 'a' in mutual 
equilibrium with the environment

M

A

Ta

a 1

ሶ𝑄𝑎 , Τሶ𝑄𝑎 𝑇𝑎

environment

ሶ𝑊rev
←
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Variation of exergy in heating / cooling a flow

Cooling. From energy and entropy balances 
(per unit time) for AM; the following is found

ሶ𝑊rev
→ = ሶ𝐸𝑥1 − ሶ𝐸𝑥2 = ሶ𝑚 ℎ1 − ℎ2 − 𝑇𝑎 𝑠1 − 𝑠2M

A

Ta

1 2

ሶ𝑄𝑎 , Τሶ𝑄𝑎 𝑇𝑎

environment
ሶ𝑊rev

→ = ሶ𝐸𝑥1 − ሶ𝐸𝑥2

= ሶ𝑚 ℎ1 − ℎ2 1 − 𝑇𝑎

𝑠1 − 𝑠2

ℎ1 − ℎ2

M

A

1 2

ሶ𝑄𝑎 , Τሶ𝑄𝑎 𝑇𝑎

environment

ሶ𝑊rev
← = ሶ𝐸𝑥2 − ሶ𝐸𝑥1 = ሶ𝑚 ℎ2 − ℎ1 − 𝑇𝑎 𝑠2 − 𝑠1

ሶ𝑊rev
← = ሶ𝐸𝑥2 − ሶ𝐸𝑥1

= ሶ𝑚 ℎ2 − ℎ1 1 − 𝑇𝑎

𝑠2 − 𝑠1

ℎ2 − ℎ1

Heating. From the balance of energy and 
entropy (per unit time) for AM; the following is 
found:

T2 <T1

T2 >T1
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Review of basic concepts: Exergy in heating and cooling bulk flows
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𝜂II =
ሶ𝑚 ℎ2 − ℎ1 − 𝑇𝑜 𝑠2 − 𝑠1

ሶ𝑊
=

ሶ𝑄𝐴 1 − 𝑇𝑜
𝑠2 − 𝑠1
ℎ2 − ℎ1

ሶ𝑊

Heating of a flow with a heat pump

𝜂I =
ሶ𝑚 ℎ2 − ℎ1

ሶ𝑊
=

ሶ𝑄𝐴

ሶ𝑊

M

A

To

1 2

ሶ𝑄𝑜

ሶ𝑚

ሶ𝑊

environment

ሶ𝑄𝐴
ሶ𝑄𝐴 = ሶ𝑚 ℎ2 − ℎ1

Warning: the use of symbol Q in this case could be misleading, for it is used to 
represent the energy supplied to the flow, while the interaction is not heat, but a 
set of continuous heat interactions at temperatures between T1 and T2. The 
entropy supplied to the flow is equal to ሶ𝑄𝐴

𝑇lm1 2

 where 𝑇lm1 2 =
ℎ2 − ℎ1

𝑠2 − 𝑠1
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Review of basic concepts: Exergy in heating and cooling bulk flows
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0 = ሶ𝑚 ℎ1 − ℎ2 + ሶ𝑚 Τ𝑤1
2 2 − Τ𝑤2

2 2 + ሶ𝑚 𝑔𝑧1 − 𝑔𝑧2 − ሶ𝑊→

ሶ𝑚𝑐 𝑇2 − 𝑇1 = ሶ𝑚𝑔 𝑧1 − 𝑧2 − ሶ𝑊→

0 = ሶ𝑚 𝑠1 − 𝑠2 + ሶ𝑆irr

ሶ𝑆irr = ሶ𝑚𝑐 ln
𝑇2

𝑇1
= ሶ𝑚𝑐 ln 1 +

𝑇2 − 𝑇1

𝑇1
≈ ሶ𝑚𝑐

𝑇2 − 𝑇1

𝑇1
=

ሶ𝑚𝑔 𝑧1 − 𝑧2 − ሶ𝑊→

𝑇1

If the jump is not exploited (no work)

𝑐 𝑇2 − 𝑇1 = 𝑔 𝑧1 − 𝑧2  →  
Δ𝑇

Δ𝑧
=

𝑔

𝑐
=

9.8

4200
≈

1

430

°C

m

If the jump is exploited in best way (maximum work)
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Review of basic concepts: Exergy of an hydraulic jump

Energy balance
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Marmore, Italy, 165 m
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Cooling of a fluid using heat at a temperature 

different from the environment (refrigeration 

or absorption machine)

M

A

To

1 2
ሶ𝑚

ሶ𝑄, 𝑇𝑄

environment

𝜂II =
ሶ𝑚 ℎ1 − ℎ2 − 𝑇𝑜 𝑠1 − 𝑠2

ሶ𝑄 1 −
𝑇𝑜
𝑇𝑄

=

ሶ𝑄𝐴 1 − 𝑇𝑜
𝑠1 − 𝑠2
ℎ1 − ℎ2

ሶ𝑄 1 −
𝑇𝑜
𝑇𝑄

𝜂I =
ሶ𝑚 ℎ1 − ℎ2

ሶ𝑄
=

ሶ𝑄𝐴

ሶ𝑄

ሶ𝑄𝐴 = ሶ𝑚 ℎ1 − ℎ2ሶ𝑄𝑜

ሶ𝑄𝐴
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ሶ𝑊→ = ሶ𝑚 ℎ1 − ℎ2 1 − 𝑇𝑎
𝑠1−𝑠2

ℎ1−ℎ2
+ ሶ𝑄 1 −

𝑇𝑎

𝑇𝑄
− 𝑇𝑎

ሶ𝑆irr  

൞

0 = ሶ𝑚 ℎ1 − ℎ2 + ሶ𝑄 − ሶ𝑄𝑎 − ሶ𝑊→

0 = ሶ𝑚 𝑠1 − 𝑠2 +
ሶ𝑄

𝑇𝑄
−

ሶ𝑄𝑎

𝑇𝑎
+ ሶ𝑆irr

(1)

(2)

(1)-Ta (2):

ሶ𝑊rev 12
→ = ሶ𝐸𝑥1 − ሶ𝐸𝑥2

ሶ𝑊
rev ሶQ
→ = ሶ𝐸𝑥 ሶ𝑄 exergy 

destroyed 
due to 

irreversibility

M

A

Ta

1 2
ሶ𝑚

ሶ𝑊→

Environment

ሶ𝑄𝑎

ሶ𝑄, 𝑇𝑄

Again the balances for the 

composite system AM 

exergy reduction of 
the flow between 
inlet and outlet

exergy provided
by the heat 
interaction
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The ratio between exergy and the energy content  in heating / cooling  of a liquid 
flow

ሶ𝐸𝑥1 = ሶ𝑚 ℎ1 − ℎ𝑎 − 𝑇𝑎 𝑠1 − 𝑠𝑎
ሶ𝐸𝑥2 = ሶ𝑚 ℎ2 − ℎ𝑎 − 𝑇𝑎 𝑠2 − 𝑠𝑎

Δ ሶ𝐸𝑥12 = ሶ𝐸𝑥2 − ሶ𝐸𝑥1 = ሶ𝑚 ℎ2 − ℎ1 − 𝑇𝑎 𝑠2 − 𝑠1

= ሶ𝑚 𝑐 𝑇2 − 𝑇1 + 𝑝2 − 𝑝1 /𝜌 − 𝑇𝑎𝑐 ln 𝑇2/𝑇1

= ሶ𝑚𝑐 𝑇2 − 𝑇1 1 −
𝑇𝑎 ln 𝑇2/𝑇1

𝑇2 − 𝑇1
−

ሶ𝑚

𝜌
𝑝1 − 𝑝2

Δ ሶ𝐸𝑥12 ≈ ሶ𝑄 1 −
𝑇𝑎 ln 𝑇2/𝑇1

𝑇2 − 𝑇1

ሶ𝑄 1 −
𝑇𝑎

𝑇𝑄

where

𝑇𝑄 = 𝑇lm12 =
𝑇2 − 𝑇1

ln 𝑇2/𝑇1

Exergy loss due to pressure 
drop in the duct. It is equal to 
the minimum pumping work. It is 
generally negligible with respect 
to thermal term.

1 2

ሶ𝑄

ሶ𝑚
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Review of basic concepts: Temperature of the equivalent heat interaction

in heating / cooling for a liquid flow
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The ratio between exergy and the energy content  in heating / cooling  of a liquid 
flow

ሶ𝐸𝑥1 = ሶ𝑚 ℎ1 − ℎ𝑎 − 𝑇𝑎 𝑠1 − 𝑠𝑎
ሶ𝐸𝑥2 = ሶ𝑚 ℎ2 − ℎ𝑎 − 𝑇𝑎 𝑠2 − 𝑠𝑎

Δ ሶ𝐸𝑥12 = ሶ𝐸𝑥2 − ሶ𝐸𝑥1 = ሶ𝑚 ℎ2 − ℎ1 − 𝑇𝑎 𝑠2 − 𝑠1

= ሶ𝑚 𝑐𝑝 𝑇2 − 𝑇1 − 𝑇𝑎𝑐𝑝 ln 𝑇2/𝑇1 +𝑇𝑎 𝑅 ln 𝑝2/𝑝1

= ሶ𝑚𝑐𝑝 𝑇2 − 𝑇1 1 −
𝑇𝑎 ln 𝑇2/𝑇1

𝑇2 − 𝑇1
−𝑇𝑎 ሶ𝑚 𝑅 ln 𝑝1/𝑝2

Δ ሶ𝐸𝑥12 ≈ ሶ𝑄 1 −
𝑇𝑎 ln 𝑇2/𝑇1

𝑇2 − 𝑇1

ሶ𝑄 1 −
𝑇𝑎

𝑇𝑄

where

𝑇𝑄 = 𝑇lm12 =
𝑇2 − 𝑇1

ln 𝑇2/𝑇1

Exergy loss due to pressure 
drop in the duct. It is equal to 
the minimum pumping work. It is 
often negligible with respect to 
thermal term.

1 2

ሶ𝑄

ሶ𝑚
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Review of basic concepts: Temperature of the equivalent heat interaction

in heating / cooling for an ideal gas flow
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The ratio between exergy and the energy content  in heating / cooling  of a liquid 
flow

ሶ𝐸𝑥1 = ሶ𝑚 ℎ1 − ℎ𝑎 − 𝑇𝑎 𝑠1 − 𝑠𝑎
ሶ𝐸𝑥2 = ሶ𝑚 ℎ2 − ℎ𝑎 − 𝑇𝑎 𝑠2 − 𝑠𝑎

Δ ሶ𝐸𝑥12 = ሶ𝐸𝑥2 − ሶ𝐸𝑥1 = ሶ𝑚 ℎ2 − ℎ1 − 𝑇𝑎 𝑠2 − 𝑠1

= ሶ𝑚 ℎfg 𝑥2 − 𝑥1 − 𝑇𝑎𝑠fg 𝑥2 − 𝑥1

= ሶ𝑚ℎfg 𝑥2 − 𝑥1 1 −
𝑇𝑎𝑠fg

ℎfg

Δ ሶ𝐸𝑥12 ≈ ሶ𝑄 1 −
𝑇𝑎𝑠fg

ℎfg

ሶ𝑄 1 −
𝑇𝑎

𝑇𝑄

where

𝑇𝑄 =
ℎfg

𝑠fg

Here we assumed negligible 
pressure drop.

1 2

ሶ𝑄

ሶ𝑚
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Review of basic concepts: Temperature of the equivalent heat interaction

in heating / cooling for a boiling or condensing flow
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Δ ሶ𝐸𝑥12 ≈ ሶ𝑄 1 −
𝑇𝑎 ln 𝑇2/𝑇1

𝑇2 − 𝑇1

For example, for the heating of pressurized water from 60°C to 120°C (in an 
environment at 300 K)

1 2

ሶ𝑄

ሶ𝑚

Δ ሶ𝐸𝑥12

ሶ𝑄
= 1 −

𝑇𝑎 ln 𝑇2/𝑇1

𝑇2 − 𝑇1
= 1 −

300 ln 393/333

60
= 0.172

Δ ሶ𝐸𝑥12

ሶ𝑄
= 1 −

𝑇𝑎 ln 𝑇2/𝑇1

𝑇2 − 𝑇1
= 1 −

300 ln 333/293

40
= 0.040

For the heating of water from 20°C to 60°C (in an environment at 300 K)

Ratio between exergy and energy content for a liquid flow:
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Review of basic concepts: Minimum exergy for 

low temperature heating a liquid or ideal-gas flow
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Laboratory reversibile 
reactorfuel C𝑘Hℓ 

and air O2, N2

in stoichiometric
quantities
a 𝑇𝑜 e 𝑝𝑜

Products of
combustion
N2, H2O, CO2 
a 𝑇𝑜 e 𝑝𝑜

ሶ𝑊rev
→ = ሶ𝐸𝑥comb ሶ𝑄𝑜

←, 𝑇𝑜

𝑇𝑜 and 𝑝𝑜 standard: 25°C and 1 atm

© 2024 Gian Paolo Beretta     @MIT 2.43 Advanced Thermodynamics

Review of basic concepts: Exergy associated with a fossil fuel (definition)
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Where
Δℎ𝑜 The enthalpy of combustion 𝑇𝑜 and 𝑝𝑜

Δ𝑠𝑜 The entropy of combustion 𝑇𝑜 and 𝑝𝑜

𝐿𝐻𝑉 = − Δℎ𝑜 lower heating value 
 HHV is the higher heating value of the fuel 

HHV = LHV + ℓ ℎfg,water(𝑇𝑜) for example for methane LHV = 50.06
MJ

kg
 

and HHV = 55.54
MJ

kg
ℓ is the number of hydrogens in the C𝑘Hℓ molecule
for the details see chapter 31 of G&B, Thermodynamics, Dover 2005, Tab.31.7

ሶ𝐸𝑥𝑓𝑢𝑒𝑙 ≈ − ሶ𝑚(Δℎ𝑜 − 𝑇𝑜Δ𝑠𝑜)
ሶ𝑄𝑓𝑢𝑒𝑙 ≈ − ሶ𝑚Δℎ𝑜 = ሶ𝑚 LHV 𝑇𝑜Δ𝑠𝑜/Δℎ𝑜 ≤ 0.025

For all hydrocarbons:

Therefore, in practice, we can

use the approximation:

ሶ𝐸𝑥fuel ≈ ሶ𝑄fuel ≈ ሶ𝑚 LHV

© 2024 Gian Paolo Beretta     @MIT 2.43 Advanced Thermodynamics

In the second part of the course we will prove that the exergy of a hydrocarbon 
C𝑘Hℓ or coal, prior to its combustion, is within ±2.5% of the LHV of the fuel

Review of basic concepts: Exergy associated with a fossil fuel (in practice)
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kcal/kg MJ/kg
Firewood 2500-4500 10-19 
charcoal 7500 31 
Peat 3000-4500 13-19 
Lignite 4000-6200 17-26 
Bitominous coal 6800-9000 28-38 
Coke 7000 29
Anthracite 8000-8500 33-36 
Crude oil 10000 42
Combustible oil 9800 41 
Kerosene (Aircraft)10400 44 
Gasoline (automative)10200 43 
Petrol (automative)10500 44 
LPG (automative) 11000 46

kcal/Nm3 MJ/kg
Natural Gas 8300 47
Methane 8570 50
Water Gas from coke 2700 
Water Gas from carburized  6000 
Blast Furnace Gas 1000 
Gas from oil(cracking) 11500-17500

Nm3 a 0°C

42 MJ correspond to:

Lift 1 ton of water up to 4300m
Heat 1 ton of water of 10°C
Evaporate 18 kg of water at patm
Oxidizing 1 kg of oil
Fission of 0.5 mg of uranium-235

© 2024 Gian Paolo Beretta     @MIT 2.43 Advanced Thermodynamics

Review of basic concepts: Lower heating values of some fuels
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Thermodynamic 

efficiency of the

best-available 

mature 

technology for 

primary energy 

conversion to 

work or 

electricity

logistic 

scale
(linearity is 

typical of a 

learning 

process)
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Review of basic concepts: 

The learning curve of fuel-to-power conversion technologies
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Review of basic concepts: 

The learning curve of fuel-to-power conversion technologies
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Review of basic concepts: 

The learning curve of fuel-to-power conversion technologies

© 2024 Gian Paolo Beretta     @MIT 2.43 Advanced Thermodynamics

F
o
rm

 "
M

ee
ti

n
g
 t

h
e 

E
n

tr
o
p

y
 C

h
a

ll
en

g
e"

, 
E

d
it

ed
 b

y
 

G
.P

. 
B

er
et

ta
, 
A

.F
. 

G
h

o
n

ie
m

, 
a
n

d
 G

.N
. 

H
a
ts

o
p

o
u

lo
s,

 

A
IP

 C
P

 S
er

ie
s,

 V
o
lu

m
e 

2
0
3
3
, 
 p

. 
3
7
5
 (

2
0
0
8
).

Slide 10.19

https://pubs.aip.org/aip/acp/article/1033/1/4/860770/A-Symposium-on-Thermodynamics-But-Why
https://pubs.aip.org/aip/acp/article/1033/1/4/860770/A-Symposium-on-Thermodynamics-But-Why


Combustion 
Process

75%

Combined Gas 
Turbine and Steam 

Thermal Cycle

85%

Overall thermodynamic efficiency

64%

Review of basic concepts:  Power-plant philosophy of best available 

flame-based fuel-to-power conversion technology
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The role of Thermodynamics?  The role of Nonequilibrium?

• History tell us about the future:
• By the end of this century, power plants will be 85% efficient.

• Thermodynamics tells us:
• By burning fossil fuels in flames, we cannot exceed 70%.
• The bottleneck is in the irreversibility of flame combustion.

• History tells us we will overcome that! How?
• We will gain a better control of fuel oxidation as it occurs or develop

alternative oxidation paths that allow better control and less irreversibility,
• We will gain better control of nonequilibrium states.
• We will improve our nonequilibrium fluid dynamics, transport phenomena, 

chemical kinetics models of heterogeneous and multicomponent systems.
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electrical 
energy out

Integrating SOFC in Thermal 

Cycles (without CO2 

sequestration) may yield:

Fuel-Cell Rankine Cycle, 72%

Fuel-Cell Combined Brayton-

Rankine Cycle, 75%

Fuel-Cell Regenerative 

Brayton Cycle, 76%

Review of basic concepts:  one way to get around the inherent irreversibility of 

flames is by oxidating the fuel in fuel cells
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Methods for the
ALLOCATION 

of
energy consumption and CO2 production

in
combined heat and power (CHP) production

and of
heat and/or power production

in
hybrid multi-resource facilities
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Why is it important? 

The question is important in real estate, for buildings served by district heating systems 
where the heat is produced in CHP facilities.

Each country has its own specific certification process and criteria for evaluating the 
energy performance of residential buildings. In the United States, the Energy Performance 
Certificate (EPC)* or Home Energy Score* provides information about a building's energy 
efficiency and, therefore, it affects the building's commercial value. Among the parameters 
which determine the Home Energy Score is how much primary energy is consumed for 
heating.

*Similar indices adopted in various countries:

Italy: Attestato di Prestazione Energetica (APE)
France: Diagnostic de Performance Énergétique (DPE)
Germany: Verbrauchsausweis 
United Kingdom: Energy Performance Certificate (EPC)
Australia: Nationwide House Energy Rating Scheme (NatHERS) or Building Sustainability Index (BASIX)
Canada: EnerGuide Rating System
Japan: Comprehensive Assessment System for Building Environmental Efficiency (CASBEE)
China: China Green Building Evaluation Standard (GBES)
India: Energy Conservation Building Code (ECBC) or Star Rating for Energy Efficiency of Buildings
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What fraction of the fuel consumed by a heat-and-power 

cogeneration facility should be allocated to the heat produced? 
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Allocation problem in Heat&Power Cogeneration: αW, αQ, partial efficiencies, and PES
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Allocation problem in Heat&Power Cogeneration: αW, αQ, partial efficiencies, and PES
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Allocation problem in CHP: Incremental Electricity-Centered Allocation
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Allocation problem in CHP: Separate Production Reference Allocation
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Allocation problem in CHP: Choice of reference values for       and        .
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Adopt reference efficiencies

that are representative of
the actual average efficiencies

of the energy production portfolio
(typically the local area where

the cogenerator itself is located)
with which the resulting 

efficiencies of the cogenerator

are to be compared.

ref
Wη ref

QCOP

chp
Wη chp

QCOP

STALPR Method*:
Self-Tuned-Average-Local-

Productions-Reference

loc
Wη loc

QCOP

sep
Q

sep

Q
sep

COP

Q

F =

Electricity-only 
production

sepW

sepQ

Heat-only 
production

 

Combined
heat&power
production  

chpW

chpQ
chpF

Local Area

sep
W

sep

W
sep

η
W

F =

%52ηsep
W =

%90sep
QCOP =

chp
Wη

chp
QCOP

loc
Wη

loc
QCOP

chpW
W

sep

chpseploc
W FαF

WW
η

+

+
=

chpQ
Q
sep

chpseploc
Q FαF

QQ
COP

+

+
=

Allocation problem in CHP: “fair” reference values in a given local area
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Allocation Example in CHP: a comparison between allocation methods 
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Why is it important? 

The question is important because several government programs (in the United States and 
in most other countries) provide economic incentives* for the production of electricity 
from solar, wind, and other renewable energy sources. In “hybrid facilities” where these 
renewable sources are combined/integrated with fossil fuels, the access to these 
incentives depends on how much of the produced electricity is recognized as renewable.

It is also relevant for multi-fuel power plants or hybrid CHP facilities.

*Examples:

Investment tax credits
Production tax credits
Accelerated depreciation
Cash grants
Loan programs
Grants and loan guarantees to agricultural producers and rural small businesses
Renewable energy tax-credit bonds

© 2024 Gian Paolo Beretta     @MIT 2.43 Advanced Thermodynamics

What fraction of the electrical energy produced in a hybrid solar-

fossil power plant should qualify as ‘renewable electricity’?
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Allocation problem in Hybrid Facilities: βF, βQ, partial efficiencies, and PES
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Allocation problem in Hybrid Facilities: βF, βQ, partial efficiencies, and PES
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Allocation problem in Hybrid Facilities: Incremental Fossil-Centered Allocation
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Allocation problem in Hybrid Facilities: Separate Production Reference Allocation
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Allocation problem in Hybrid Facilities: Choice of reference values for       and     .

Fossil-solar
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SPR method:

Fixed values set by some local Authority

ref
Fη

Exergy method:

Fixed values set by Thermodynamics 

Effectively takes as references 
the REVERSIBLE heat engines!
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