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Stable-equilibrium properties of
MIXTURES
(within the simple-system model)

Partial properties
Gibbs-Dalton ideal mixtures
Mixing and separation
Osmotic pressure and blue energy
Stratification
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Experimental measurement of SES properties of mixtures:

Partial properties from the chemical potentials

G=E-TS+pV=GT,pn) dG=—-SdT+Vdp+p-dn

(Z—g)T,p,n = =) (g—i)Tpn =V(Tpn) pi= (gZ)T,pané = wlTopoy)

_\

a:ul Mz
d,-z( ) aT ( ) dp ( ) dn; = —s;dT + v;d T dns
s OT / pn * Op / Tn +Z 871] T.pn) " Sidd T+ ¥ p+zi_1,u,] )
— ——

—S; Vi Ii; = i dpsi|r
where we define
_ (g‘;)p — _(8212;%)19 = <§i>Tpn/ = s,(T,p,ny) Partial entropy of constituent i
(%’?) = (8(??28€L2)Tn = (g:;)TM = v;(T,p,ny) Partial volume of constituent i
(), = ), = (5 1, = 1 T00) = T

notice that, from dE =TdS —pdV +pu-dn and dH =TdS + Vdp + p - dn we also have

oF
( ) =e;(T,p,ny) =Ts; —pv; + ; Partial energy of constituent ¢
T,pn’

on;
<gnHi>T,p,n; = hi(Top,ny) =T si+ i = (%((ﬁi//g)»

All partial properties can be evaluated once we know the chemical potentials

Partial enthalpy of constituent

as functions of T, p, y and n, i.e., u; = (T, p, ny).

Of course, the dependence on n vanishes for large n and u; = p;(T, p,y).
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Experimental measurement of SES properties of mixtures:

Mixture properties from the partial properties

So, in general (i.e., for small and large systems) we proved

ansl (@> . n large S:inisi
i=1

V = anvz (ﬁEu) nlaje V = zr:nivi
i=1

OF n largs - :
E N Wi = _(_u) IJ E n; iti ; = 0 Duhem-Margules relation
— ’ 8nj T.pn i1 ’

Moreover, recalling the definitions of Fu and partial properties
FBu=FE-TS+pV—-—p-n=F+pV—-—pn=G—p-n=H-TS—p-n
i =€ —Tsi +pvi = fi+pvi =g =hi = T's;

we also find the following relations, which justify calling partial properties that way:

4 OF OF. n large .
E:ZniemtEu—T(—u) —p(—u) —lj E:Zniei
- pn Tmn -
1=1

oT op
8Eu n large d
F = memLEu— ((9]9) % F:Znifi
i=1
G:ngﬁEu:ZmumLEu = G:imgi:imm
=il i=1 ' i=1
H—in-h-+Eu—T(@) nlge o Zn
_Z:1 7 7 aT B 7
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Experimental measurement of SES properties of mixtures:

Partial properties from properties of isothermobaric mixing

Thermal | Pure 2 Mixture Thermal Mixture
A | reservoir dn; (£ ¢ IS B reservoir Nni,...,n; +dn;,...n,
T, p T, p T, p T, p T, p

Enthalpy of T'p-mixing”
H(T,p,ny,...,n; +dn;,...,n.) — [H(T,p,nl,...,ni,...,nr)—|—h7;7;(T,p)dni]

dni
Hg — H OH
N/ Tpn;

Similarly, we define the volume, energy, and entropy of Tp-mixing
Avm”‘ = v;(T, p,ny) — vy (T, p) Aemlx =¢;(T,p,ny) — e;;(T, p) Asmlx = s;(T,p,ny) — s: (T, p)

They are all measurable and allow the measurement of partial properties, once the pure-substance

AR =

= lim
dn;—0 dnl

properties of the mixture components are known. as a result, we can write
=h; = Ts; = hy + Ah;-nix — sy — TAS?HX = (T, p) + Ah?ﬂix - TASmiX = wii(T, pii)
. Pii .
Pii : : RT'In— ideal gas
pii (T, pii) — (T, p) = / vi(T,p') dp’ = AR — TAs™ = p
p —(p — Dii) Vi ideal liquid or solid

* Recall that the enthalpy is additive for systems in SES at the same pressure.
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Experimental measurement of SES properties of mixtures:

example: €Nthalpies of isothermobaric mixing of molten salts

Thermal
A reservoir
T, p

Pure i1
dni
T, p

Mixture

ny,. .. ,Ny,. ..

T,p

3Ty

p—
i)
S—

Thermal Mixture
B reservoir ni,...,n; +dng,. .., n,
T, p T, p

AkCI-CeCl, system

5000 | ¥
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«e00@

Cs* cl-
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wA o  Fig.1 from: J. Schorne-Pinto, et al., Correlational Approach to Predict the

Enthalpy of Mixing for Chloride Melt Systems, ACS Omega 2022 7 (1),

Last decade applications in molten salt systems:

solvents for metals, particularly for extraction
processes

recycling and reprocessing of rare-earth elements
used in electronics and magnets and nuclear fuels
heat transfer media for solar-thermal systems and in
molten salt reactors, which use salts as a coolant for

solid fuel or as a solvent for a liquid fuel containing
actinides

362-371

@MIT 2.43 Advanced Thermodynamics Slide 12.06


https://doi.org/10.1021/acsomega.1c04755
https://doi.org/10.1021/acsomega.1c04755

AV (T, p, 1) = 1 Av™ + (1 — 1) Avy™

Experimental measurement of SES properties of mixtures:

Example: VOlumes of isothermobaric mixing of molten salts

Mixture

Nni,...,n; +dn;,...n,

T,p

szmix - Ui(T7p7 ny) - Uz’i<T7 p)

Y.P. Handa, G.C. Benson, Volume changes on mixing two liquids: A review
of the experimental techniques and the literature data, Fluid Phase

R. Battino, Volume changes on mixing for binary mixtures of liquids,

Thermal |Pure 2 Mixture Thermal
reservoir dn; N1ye v Mgy e o 3Ty B reservoir
T, p T p T, p T, p

Reviews of experimental data:

Equilibria 3, 185 (1979).

Chemical Reviews 71, 5 (1971).
0 U1 1
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Are mixture properties determined by the pure-substance properties of its constituents?

Partial properties in terms of partial pressures and pure-substance properties

As discussed in Section 26.5 of G&B2005, it is noteworthy that the meaning of the term
“partial” in the expression “partial pressure” is not the same as in the definition of
“partial properties.” In fact, the partial pressure p;; is not defined by a partial derivative
with respect to amount n; at constant 7', p, and n;. Nevertheless, partial properties can
be expressed in terms of partial pressures and its derivatives as follows.

Recall that, by the definition of partial pressure, u;(T,pi) = wi(T,p,n) = (T, p,y)
so that p; = pu(T,p,y). Moreover, for the pure substance, p; (T, pi;) = gi:(T, pi;) and
dgii = —5i(T, pii) AT + v (T, pi;) dpsi. We find

s =5, = ~(55),.~ () (5),..

Opi;
— Sii(T7 pii) — Uii(Ta pii)pii,T(Tapay) where we defined DPii T = ( b )
Py

oT
vi(T, p,y) = (%’L;Z)Tn - (gg:):r(?&]z)Ty

Uii(T7 pii)pii,p<T7pay) where we defined Diip = (

apii)
Op
hi(T,p,y) = (T, p,n) + T si(T,p,y) = his(T, pis) — T vis (T, pis) pis,r (T, p, y)
ui(T,p,y) = hi(T, p,n) — pvi(T, p,y)

= ’Um'(T7 pii) + Uz'i(Ta pii) [ it piz’,T(Tapa y) T — pii,p<Tap7y) p]
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Lennard-Jones potential (model of intermolecular forces)

o=« ro-uE @ [E) -
[ T e N I e S M (S I

V(r)/e F(r)o/e

1.5 F 40 |

20 F

repulsive

10

ol | V — =
attractive
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Are mixture properties determined by the pure-substance properties of its constituents?

Ideal Gibbs-Dalton behavior

rigid membrane Zly

permeable
only to

constituent/

Ideal Gibbs-Dalton behavior is defined by
Assumption 1: U = > nyui (T, pis)
UTJ,SQ,Z’:Z;E’-TJ Assumption 2: S =>"" 1n;:84(T, pis;)

' Assumption 3: V= nvu(T, py) Vi

This derivation assumes the simple-system approximation.

Subtract from the Euler relation of the mixture, U = T'S — pV + > ', p;n;, the specific
Euler relations of its pure constituents, u; = T's;; — piuvii + Wi, evaluated at T and py;,
and each multiplied by the amount n; of the corresponding constituent in the mixture

<U_Z TLZ’LL“(T, pm)) — T (S_Z nisii<T7 pu ) pv+z nzpnvm T » Pii +Z ,LL“
1=1 1=1

The last summation is zero because at the specified conditions p; = u; (T, p,n) = pyu(T, pi) =
;- Now, solve for p (we may call this Dalton’s theorem) to obtain a relation between
the pressure of the mixture and the partial pressures of its components

1 < 1 ’ T -
= V Z nipiivii<T> pm‘) — V (U — Z niuii<T7 pzz)) + v (S — Z nisii<T7 pm))
i=1 i=1

i=1
Using the three assumptions that define ideal Gibbs-Dalton behavior, we obtain Dalton’s
law of partial pressures, p =Y ', p;; (which clearly holds only in that very special limit).
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Are mixture properties determined by the pure-substance properties of its constituents?

Ideal Gibbs-Dalton behavior

Ideal Gibbs-Dalton behavior is defined by

Assumption 1: U =37 nu(T,p,y) = > i nivyi (T, pi)

Assumption 2: S =" n;s;(T,p,y) =D, niSii(T, pis)

Assumption 3: V =>""_ nv;(T,p,y) = njvii (T, pii) Yi  (no sum!)
here the first equalities recall the relations in terms of partial properties.
The assumptions can be interpreted like this:

Mixture Pure ny Pure n; Pure n,
(£ S TR 1 I 1 T, p11 T, pii T, ppr
T, p p— ull(T, p11) —|— v —|— u”(T,p”) _'_ tte _|_ urr(T7 prr)
U,S 811(T7P11) Sm'(T, piz’) Srr(Ta prr)
%4 %4 vV V

Ideal Gibbs-Dalton mixture of ideal gases

RT RT RT
Vi we have vy (T, py) = vi(T,p) = V = nwu(T, pi) = ny
p Pii
RT RT RT Dii Ny
Dii = 7”%7 0= Zpu an = n— ? = Y =Y =  Dii =YD

a i Dii
:ui(T7p7y) — /Jm'(T7 pu‘) = /Ju'(T7 p) ‘l'/ ( a ) dp’ = ,Lbz'z'(T, p) +/ Uiz’(Ta p') dp’
p NOp/T p

Diq RT
—wTp)+ [ (1) + RT I ™ = (T, p) + RT n,
p
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Are mixture properties determined by the pure-substance properties of its constituents?

Ideal Gibbs-Dalton mixtures of ideal gases

RT RT RT
Vi we have v; (T, p;) = vi(T,p) = V = nvu(T, pi) = ny .
p ii
RT RT RT Dii Ty B
Dii = nz7 p= Zpu an = n— ? = Yi =  DPi =Yip

a i Dii , ,
Mi(T,pay) = ;LLii(Ta pn') = Mn‘(T7 p) =+ / (L) dp’ = ,um'(T, p) + / Uii(Tap ) dp
p NOp/T p

Dis RT
= pii(T,p) + /
p 4

+(T,p) + RTln? = 1;(T,p) + RT Iny;

O Opi RT
(Topy) == (54)  =sall,p) = Ringi = sa(T.pi)  w(Topy) = () =valTp) = =
si(T,p,y) o7 ), = Sl ny; = si(T,pa) 0T, py) o ) vi(T, p)
i/ T)
hi(T', p, :( ) = hii (T (L0, y) =T s; — pug + py = wy (T
(T.p,y) 9(1/T) o (1) u(T',p,y) pU; + (T)
Note also that V' = Z V= Z nvi (T, p) (Amagat law of additive volumes)
i=1 i=1
where V' = nv;;(T, p) is called proper volume of i
Mixture Pure ny | Pure ns Pure n,
TR A 1 T7p Tap Tap
T, p u (1) | uze(T) urr (T)
U, S Sll(Tvp) 322(T7p) Srr(Tvp)
g R [ B e
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Isothermobaric mixing of ideal gases

Entropy of spontaneous mixing

Véﬁﬁm/
7! N9 N, % N1, Noy. ..y Ny é
7 a7 , 7
A 1T | T T B' Y T %
7 O 7 / 2 O
R y % P 4
A T A T A A /mﬁ

Remove partitions allowing spontaneous mixing. Using energy, volume, and entropy addi-
tivity for A, and ideal G-D-mixture model for B’,

nRT
Ua = Z nui(T) — Va = Z nvii (T, p) = e Sa = Z nisii(1', p)

RT"
UB/ = Z nlu“(T') VB’ = Z nivii(T’,p/) = np/ SB’ Z nzsm ,p“

Energy balance for the isolated system, Uy — Uy = 0, recalling du;; = ¢, (7T) dT,

UB’ - UA — Z nz[uzz(T/ uzz Z n; /T Cy zz =0

Since ¢, (1) > 0 for any T, the integral can only be zero if 77 = T'. Therefore, the volume balance
Vi = Vi yields p’ = p.

Entropy balance for the isolated system, Sp — Sa = Six, recalling ds;; = ¢,(1") dT/T — Rdp/p,
so that s, (1", p};) = su(T",p') — Rlny;, yields (for 7" =T and p’ = p)

Sir = Spr—SA = an su(T', pi)—s4: (T, p)] anAsmIX Zni[—Rlnyi] = —nRZyi Iny; >0

© 2024 Gian Paolo Beretta @MIT 2.43 Advanced Thermodynamics Slide 12.13



Isoentropic mixing of ideal gases

Extracting the adiabatic availability of mixing

Vfﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁm @)
] T no ny 7 n1, N2,..., Ny %
% 7 Z
é T T . T B/ % T %
% % " %
R P G 7 p %

Do the mixing with a reversible weight process. Using energy, volume, and entropy additivity for A,
and ideal G-D-mixture model for B”,

nRT

Ur = Z nit; (1) Va = Z n;vi (T, p) = e SA = Z nisii (T, p)
Upr = Y naug(T") Vi = Z v (T, p) = n];,,T g Spr = Z nisiu (T, py;)

" assuming constant specific

The volume balance Vg = Vi imposes p” /T" = p/T. Thus, recalling p!, = y; p
heats, defining ¢, miz = Y, Yi Cvi, and using
/! /! /! /!

T T T
Sii <T”,p;'z- — szp) - Sii(Ta p) = Cpii In ? — Rln (yz?) = Cuii In ? — Rlny;

the entropy balance for the reversible weight process, Sg» — Sa = 0, becomes
/!

T T//
o . "o o .
0= Sgr — Sp = an[su(T D) — Su(L,p)] = Z 7 |Cy,ii 10 T~ Rlny;| = nfcymiz In T~ RZyi In y;]

and yields 7" = T exp( Y viln yz) (clearly T” < T). Therefore, the energy balance for the weight
process, Ugr — Uy = —W | yields

rev?’

W =Uxy—Ugr = Z nilug (T") — uy (T)] = n o mic(T —T") = ncymicT [1 — exp (

CU maix

Cv,]::m Z y; In ?Jz”
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Isoentropic mixing of ideal gases

Extracting the adiabatic availability of mixing

] T U Ty

é T | T T

7

g p | p p ®
A A A A A A A A A A A A A A A A A A,

—>

Vacuulll

nq

SIS ISSSIIIIIIIIISSIII IS IS SIS SIS TSI I I,

B//

I Y

ni, Na,. .

T//

Ny

AN

NN

N
%
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
N
N

Vacuuln .

<+ °

=
=
[\)
3
N

N

porous plug
permeable
only to 1

© 2024 Gian Paolo Beretta

porous plug
permeable
only to 2

|

@MIT 2.43 Advanced Thermodynamics

Slide 12.15



Image Credits

Slide 6:

Enthalpy of mixing for the alkali series with cerium trichloride and ionic radii of alkali elements and chlorine © American Chemical Society. All
rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.
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