2.43 ADVANCED THERMODYNAMICS

Spring Term 2024 LECTURE 13

Room 3-442 Tuesday, March 19, 2:30pm - 4:30pm

Instructor: Gian Paolo Beretta <u>beretta@mit.edu</u> Room 3-351d Stable-equilibrium properties of MIXTURES (within the simple-system model)

Partial properties Gibbs-Dalton ideal mixtures Mixing and separation Osmotic pressure and blue energy Stratification Experimental measurement of SES properties of mixtures:

Partial properties from properties of isothermobaric mixing

А	Thermal reservoir T, p	Pure ii dn_i T, p	$\begin{array}{c} \text{Mixture} \\ n_1, \dots, n_i, \dots, n_r \\ T, p \end{array}$	В	Thermal reservoir T, p	$ \begin{array}{c} \text{Mixture} \\ n_1, \dots, n_i + dn_i, \dots, n_r \\ T, p \end{array} $
	, , ,) 1		71) 1

Enthalpy of Tp-mixing^{*}

$$\Delta h_i^{\text{mix}} = \frac{H(T, p, n_1, \dots, n_i + dn_i, \dots, n_r) - \left[H(T, p, n_1, \dots, n_i, \dots, n_r) + h_{ii}(T, p) \, dn_i\right]}{dn_i}$$

$$= \lim_{dn_i \to 0} \frac{H_{\text{B}} - H_{\text{A}}}{dn_i} = \left(\frac{\partial H}{\partial n_i}\right)_{T, p, n_i'} - h_{ii}(T, p) = h_i(T, p, n\mathbf{y}) - h_{ii}(T, p)$$
Similarly, we define the volume, energy, and entropy of *Tp*-mixing
$$\Delta v_i^{\text{mix}} = v_i(T, p, n\mathbf{y}) - v_{ii}(T, p) \qquad \Delta e_i^{\text{mix}} = e_i(T, p, n\mathbf{y}) - e_{ii}(T, p) \qquad \Delta s_i^{\text{mix}} = s_i(T, p, n\mathbf{y}) - s_{ii}(T, p)$$
They are all measurable and allow the measurement of partial properties, once the pure-substance properties of the mixture components are known. as a result, we can write
$$\mu_i = h_i - Ts_i = h_{ii} + \Delta h_i^{\text{mix}} - Ts_{ii} - T\Delta s_i^{\text{mix}} = \mu_{ii}(T, p) + \Delta h_i^{\text{mix}} - T\Delta s_i^{\text{mix}} = \mu_{ii}(T, p_{ii})$$

$$(T_{\text{mix}}) = \sqrt{(T_{\text{mix}})} \int_{0}^{p_{ii}} (T_{\text{mix}} + b_i) \, dt = \Delta t \, \text{mix}$$

$$(T_{\text{mix}}) = \sqrt{(T_{\text{mix}})} \int_{0}^{p_{ii}} \frac{RT \ln \frac{p_{ii}}{T}}{T} \frac{1}{T} \frac{1}{T}$$

 $\mu_{ii}(T, p_{ii}) - \mu_{ii}(T, p) = \int_{p} \quad v_{ii}(T, p') \, dp' = \Delta h_i^{\text{mix}} - T\Delta s_i^{\text{mix}} = \begin{cases} TT \text{ If } p \\ -(p - p_{ii})v_{ii} \end{cases} \quad \text{ideal liquid or solid}$

* Recall that the enthalpy is additive for systems in SES at the same pressure.

Lennard-Jones potential (model of intermolecular forces)

$$V(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$
$$= \epsilon \left[\left(\frac{r_{\min}}{r}\right)^{12} - 2\left(\frac{r_{\min}}{r}\right)^{6} \right]$$

$$F(r) = 24 rac{\epsilon}{\sigma} \left(rac{\sigma}{r}
ight)^3 \left[2 \left(rac{\sigma}{r}
ight)^6 - 1
ight]$$

 $= 12 rac{2^{2/3}\epsilon}{r_{\min}} \left(rac{r_{\min}}{r}
ight)^3 \left[\left(rac{r_{\min}}{r}
ight)^6 - 1
ight]$

Are mixture properties determined by the pure-substance properties of its constituents? Ideal Gibbs-Dalton behavior

Ideal Gibbs-Dalton behavior is defined by Assumption 1: $U = \sum_{i=1}^{r} n_i u_i(T, p, \mathbf{y}) = \sum_{i=1}^{r} n_i u_{ii}(T, p_{ii})$ Assumption 2: $S = \sum_{i=1}^{r} n_i s_i(T, p, \mathbf{y}) = \sum_{i=1}^{r} n_i s_{ii}(T, p_{ii})$ Assumption 3: $V = \sum_{i=1}^{r} n_i v_i(T, p, \mathbf{y}) = n_i v_{ii}(T, p_{ii}) \forall i \pmod{1}$ (no sum!) here the first equalities recall the relations in terms of partial properties. The assumptions can be interpreted like this:

Ideal Gibbs-Dalton mixture of ideal gases

$$\forall i \text{ we have } v_{ii}(T, p_{ii}) = \frac{RT}{p_{ii}} \quad v_{ii}(T, p) = \frac{RT}{p} \quad V = n_i v_{ii}(T, p_{ii}) = n_i \frac{RT}{p_{ii}}$$

$$p_{ii} = n_i \frac{RT}{V} \quad p = \sum_i p_{ii} = \sum_i n_i \frac{RT}{V} = n \frac{RT}{V} \quad \frac{p_{ii}}{p} = \frac{n_i}{n} = y_i \quad \Rightarrow \quad p_{ii} = y_i p$$

$$\mu_i(T, p, \boldsymbol{y}) = \mu_{ii}(T, p_{ii}) = \mu_{ii}(T, p) + \int_p^{p_{ii}} \left(\frac{\partial\mu_{ii}}{\partial p}\right)_T dp' = \mu_{ii}(T, p) + \int_p^{p_{ii}} v_{ii}(T, p') dp'$$

$$= \mu_{ii}(T, p) + \int_p^{p_{ii}} \frac{RT}{p'} dp' = \mu_{ii}(T, p) + RT \ln \frac{p_{ii}}{p} = \mu_{ii}(T, p) + RT \ln y_i$$

Are mixture properties determined by the pure-substance properties of its constituents?

Ideal Gibbs-Dalton mixtures of ideal gases

$$\forall i \text{ we have } v_{ii}(T, p_{ii}) = \frac{RT}{p_{ii}} \quad v_{ii}(T, p) = \frac{RT}{p} \quad V = n_i v_{ii}(T, p_{ii}) = n_i \frac{RT}{p_{ii}}$$

$$p_{ii} = n_i \frac{RT}{V} \quad p = \sum_i p_{ii} = \sum_i n_i \frac{RT}{V} = n \frac{RT}{V} \quad \frac{p_{ii}}{p} = \frac{n_i}{n} = y_i \quad \Rightarrow \quad p_{ii} = y_i p$$

$$\mu_i(T, p, \mathbf{y}) = \mu_{ii}(T, p_{ii}) = \mu_{ii}(T, p) + \int_p^{p_{ii}} \left(\frac{\partial\mu_{ii}}{\partial p}\right)_T dp' = \mu_{ii}(T, p) + \int_p^{p_{ii}} v_{ii}(T, p') dp'$$

$$= \mu_{ii}(T, p) + \int_p^{p_{ii}} \frac{RT}{p'} dp' = \mu_{ii}(T, p) + RT \ln \frac{p_{ii}}{p} = \mu_{ii}(T, p) + RT \ln y_i$$

$$s_i(T, p, \mathbf{y}) = -\left(\frac{\partial\mu_i}{\partial T}\right)_{p,\mathbf{n}} = s_{ii}(T, p) - R \ln y_i = s_{ii}(T, p_{ii}) \quad v_i(T, p, \mathbf{y}) = \left(\frac{\partial\mu_i}{\partial p}\right)_{T,\mathbf{n}} = v_{ii}(T, p) = \frac{RT}{p}$$

$$h_i(T, p, \mathbf{y}) = \left(\frac{\partial(\mu_i/T)}{\partial(1/T)}\right)_{p,\mathbf{n}} = h_{ii}(T) \quad u_i(T, p, \mathbf{y}) = T s_i - p v_i + \mu_i = u_{ii}(T)$$
Note also that $V = \sum_{i=1}^r V_i' = \sum_{i=1}^r n_i v_{ii}(T, p)$ (Amagat law of additive volumes)

$$where V' = n v_i(T, p) \text{ is called proper volume of } i$$

where $V'_i = n_i v_{ii}(T, p)$ is called proper volume of *i*

Isothermobaric mixing of ideal gases

Entropy of spontaneous mixing

Remove partitions allowing spontaneous mixing. Using energy, volume, and entropy additivity for A, and ideal G-D-mixture model for B',

$$U_{A} = \sum_{i} n_{i} u_{ii}(T) \qquad V_{A} = \sum_{i} n_{i} v_{ii}(T, p) = \frac{nRT}{p} \qquad S_{A} = \sum_{i} n_{i} s_{ii}(T, p)$$
$$U_{B'} = \sum_{i} n_{i} u_{ii}(T') \qquad V_{B'} = \sum_{i} n_{i} v_{ii}(T', p') = \frac{nRT'}{p'} \qquad S_{B'} = \sum_{i} n_{i} s_{ii}(T', p'_{ii})$$

Energy balance for the isolated system, $U_{B'} - U_A = 0$, recalling $du_{ii} = c_{v,ii}(T) dT$,

$$U_{\rm B'} - U_{\rm A} = \sum_{i} n_i [u_{ii}(T') - u_{ii}(T)] = \sum_{i} n_i \int_{T}^{T'} c_{v,ii}(\theta) \, d\theta = 0$$

Since $c_{v,ii}(T) > 0$ for any T, the integral can only be zero if T' = T. Therefore, the volume balance $V_{B'} = U_A$ yields p' = p. Entropy balance for the isolated system, $S_{B'} - S_A = s_{irr}$, recalling $ds_{ii} = c_{p,ii}(T) dT/T - R dp/p$, so that $s_{ii}(T', p'_{ii}) = s_{ii}(T', p') - R \ln y_i$, yields (for T' = T and p' = p) $S_{irr} = S_{B'} - S_A = \sum_i n_i [s_{ii}(T', p'_{ii}) - s_{ii}(T, p)] = \sum_i n_i \Delta s_i^{mix} = \sum_i n_i [-R \ln y_i] = -nR \sum_i y_i \ln y_i \ge 0$

Isoentropic mixing of ideal gases

Extracting the adiabatic availability of mixing

Do the mixing with a reversible weight process. Using energy, volume, and entropy additivity for A, and ideal G-D-mixture model for B",

$$U_{A} = \sum_{i} n_{i} u_{ii}(T) \qquad V_{A} = \sum_{i} n_{i} v_{ii}(T, p) = \frac{nRT}{p} \qquad S_{A} = \sum_{i} n_{i} s_{ii}(T, p)$$
$$U_{B''} = \sum_{i} n_{i} u_{ii}(T'') \qquad V_{B''} = \sum_{i} n_{i} v_{ii}(T'', p'') = \frac{nRT''}{p''} \qquad S_{B''} = \sum_{i} n_{i} s_{ii}(T'', p''_{ii})$$

The volume balance $V_{B''} = V_A$ imposes p''/T'' = p/T. Thus, recalling $p''_{ii} = y_i p''$, assuming constant specific heats, defining $c_{v,mix} = \sum_i y_i c_{v,ii}$, and using

$$s_{ii}\left(T'', p_{ii}'' = y_i \frac{T''}{T}p\right) - s_{ii}(T, p) = c_{p,ii}\ln\frac{T''}{T} - R\ln\left(y_i \frac{T''}{T}\right) = c_{v,ii}\ln\frac{T''}{T} - R\ln y_i$$

the entropy balance for the reversible weight process, $S_{B''} - S_A = 0$, becomes

$$0 = S_{B''} - S_A = \sum_i n_i [s_{ii}(T'', p_{ii}'') - s_{ii}(T, p)] = \sum_i n_i [c_{v,ii} \ln \frac{T''}{T} - R \ln y_i] = n [c_{v,mix} \ln \frac{T''}{T} - R \sum_i y_i \ln y_i]$$

and yields $T'' = T \exp\left(\frac{R}{c_{v,mix}} \sum_{i} y_i \ln y_i\right)$ (clearly T'' < T). Therefore, the energy balance for the weight process, $U_{B''} - U_A = -W_{rev}^{\rightarrow}$, yields

$$W_{\rm rev}^{\to} = U_{\rm A} - U_{\rm B''} = \sum_{i} n_i [u_{ii}(T'') - u_{ii}(T)] = n \, c_{v,mix}(T - T'') = n \, c_{v,mix} T \Big[1 - \exp\Big(\frac{R}{c_{v,mix}} \sum_{i} y_i \ln y_i\Big) \Big]$$

Isoentropic mixing of ideal gases

Extracting the adiabatic availability of mixing

Semipermeable (passive transport) vs selective (active transport) Membranes

https://www.youtube.com/watch?v=hxFj8qgejek

https://www.youtube.com/watch?v=XbnhmrNNe-w

Isothermobaric mixing of ideal gases

Entropy of spontaneous mixing (Gibbs paradox resolved)

However, if particles 1 and 2 are identical, removing (and adding) partitions, within the simple system model, changes no SES property. So, in this case $S_{irr} = 0$.

Information theory interpretation: Shannon information entropy

	$n_1,$	$n_2,.$	•••,	n_r	
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•••	•	•	•
•	• •	•	•	• •	•

probability surpise normalized $-\ln(p)/-\ln(0.5)$ -ln(p) р 1 0.0 0 N2 0.79 0.2 0.3 50% 0.5 0.7 1 02 0.21 1.6 2 7 0.009 4.7 Ar CO2 0.0005 11 7.6

Suppose we have r possible types of particles, with molecular masses M_1, \ldots, M_r .

The probability to observe a particle of type *i* is $p_i = \frac{n_i}{n} = y_i$. Note: $p_i \ge 0$ and $\sum_{i=1}^r p_i = 1$ The mean or expected value of the mass is $\langle M \rangle = \sum_{i=1}^r p_i M_i$.

The degree of uncertainty, about which M_i will be observed next, is measured by the

Shannon information entropy
$$S_I = -\sum_{i=1}^{r} p_i \ln p_i$$

Example. Suppose we do not know the y_i 's, but we have measured $\langle M \rangle$. What is the **least biased assignment of** y_i 's compatible with the measured $\langle M \rangle$? Maximize $-\sum_{i=1}^r p_i \ln p_i$ subject to the constraints $\sum_{i=1}^r p_i = 1$ and $\sum_{i=1}^r p_i M_i = \langle M \rangle$. With the method of Lagrange multipliers obtain $p_i = \frac{\exp(-\lambda_M M_i)}{\sum_i \exp(-\lambda_M M_i)}$. Inserting these in the constraint, $\sum_{i=1}^r M_i \exp(-\lambda_M M_i)/Z = \langle M \rangle$, yields $\lambda_M = \lambda_M (\langle M \rangle)$. Classic reference: E.T. Jaynes, Information theory and statistical mechanics, Physical Review 106, 620 (1957).

Quantum model of a structureless particle in a box: Ideal gas equation of state for a single particle in a box

For a system consisting of a single particle $(n = 1 \text{ molecule} = 1/N_{Av} \text{ mol})$ of mass m with no internal structure and only translational degrees of freedom, confined in a parallelepiped-shaped container with sides ℓ_1 , ℓ_2 , ℓ_3 (and volume $V = \ell_1 \ell_2 \ell_3$), the quantized energy levels are

$$\epsilon_{j_1,j_2,j_3} = \epsilon_{j_1} + \epsilon_{j_2} + \epsilon_{j_3} = \frac{h^2}{8m} \left(\frac{j_1^2}{\ell_1^2} + \frac{j_2^2}{\ell_2^2} + \frac{j_3^2}{\ell_3^2} \right) \quad \text{where } j_1, j_2, j_3 = 1, 2, 3 \dots, \infty$$

The maximum entropy principle implies that the SES probability distribution $\{p_{j_1,j_2,j_3}\}$ is given by the solution of the constrained maximization problem

$$\max_{\{p_{j_1,j_2,j_3}\}} S = -nR \sum_{j} p_{j_1,j_2,j_3} \ln p_{j_1,j_2,j_3} \quad \text{subject to} \quad \sum_{j} p_{j_1,j_2,j_3} = 1 \quad \text{and} \quad \sum_{j} p_{j_1,j_2,j_3} \epsilon_{j_1,j_2,j_3} = E$$

where $\sum_{j} = \sum_{j_1=1}^{\infty} \sum_{j_2=1}^{\infty} \sum_{j_3=1}^{\infty}$. Assigning the Lagrange multiplier $1/k_{\rm B}T$ to the energy constraint, and noting that $nR = R/N_{\rm Av} = k_{\rm B}$ (the Boltzmann constant), we find the SES distribution

$$p_{j_1,j_2,j_3} = \frac{\exp(-\epsilon_{j_1,j_2,j_3}/k_{\rm B}T)}{\mathcal{Q}} = p_{j_1}p_{j_2}p_{j_2} = \frac{\exp(-\epsilon_{j_1}/k_{\rm B}T)}{\mathcal{Q}_1} \frac{\exp(-\epsilon_{j_2}/k_{\rm B}T)}{\mathcal{Q}_2} \frac{\exp(-\epsilon_{j_3}/k_{\rm B}T)}{\mathcal{Q}_3}$$

where we define the partition functions $Q = Q_1 Q_2 Q_3$, $Q_i = \sum_{j_i=1}^{\infty} \exp(-\epsilon_{j_i}/k_{\rm B}T)$. It easy to verify that the probabilities and all the properties can be obtained from derivatives of the Q_i 's and that $T = (\partial E/\partial S)_{\ell_1,\ell_2,\ell_3}$, i.e., the Lagrange multiplier indeed represents the temperature $E = k_{\rm B}T^2 \left(\frac{\partial \ln Q}{\partial T}\right)_{\ell} = E_1 + E_2 + E_3$ $E_i = \sum_{j_i} p_{j_i}\epsilon_{j_i} = k_{\rm B}T^2 \left(\frac{\partial \ln Q_i}{\partial T}\right)_{\ell_i}$ $p_{j_i} = -k_{\rm B}T \left(\frac{\partial \ln Q_i}{\partial \epsilon_{j_i}}\right)_T$ $S = k_{\rm B} \left(\frac{\partial T \ln Q}{\partial T}\right)_{\ell} = S_1 + S_2 + S_3$ $S_i = -k_{\rm B} \sum_{j_i} p_{j_i} \ln p_{j_i} = k_{\rm B} \left(\frac{\partial T \ln Q_i}{\partial T}\right)_{\ell_i} = \frac{E_i}{T} + k_{\rm B} \ln Q_i$

Quantum models of particles: Upper bounded vs unbounded energy spectrum

energy levels e_j j = 1, 2, ..., N

 $E = \sum_{i} p_{j} e_{j}$ energy (assuming $\rho \mathbf{H} = \mathbf{H} \rho$)

probability p_j measures the degree of involvement of level e_j in sharing the energy load

 $S = -k_B \sum_j p_j \ln p_j$ entropy measures the global degree of sharing the energy load among levels

Steepest entropy ascent equation of motion models the time evolution of the state (probability distribution) towards SES

Ideal gas equation of state for a single particle in a box

For
$$i = 1, 2, 3$$
, $\epsilon_{j_i} = \frac{h^2}{8m} \left(\frac{j_i^2}{\ell_i^2}\right)$ $\mathcal{Q}_i = \sum_{j_i=1}^{\infty} \exp\left(-\frac{\epsilon_{j_i}}{k_{\rm B}T}\right) = \sum_{j_i=1}^{\infty} \exp\left(-\frac{h^2 j_i^2}{8m k_{\rm B}T \ell_i^2}\right)$
 $\mathcal{Q}_i = \mathcal{Q}_i(T, \ell_i)$ $\operatorname{d} \ln \mathcal{Q}_i = \frac{E_i}{k_{\rm B}T^2} \operatorname{d} T + \frac{2E_i}{k_{\rm B}T} \frac{\mathrm{d}\ell_i}{\ell_i}$ $\left(\frac{\partial \ln \mathcal{Q}_i}{\partial T}\right)_{\ell_i} = \frac{E_i}{k_{\rm B}T^2}$ $\left(\frac{\partial \ln \mathcal{Q}_i}{\partial \ln \ell_i}\right)_T = \frac{2E_i}{k_{\rm B}T}$
 $S_i = \frac{E_i}{T} + k_{\rm B} \ln \mathcal{Q}_i$ $\operatorname{d} S_i = \frac{1}{T} \operatorname{d} E_i + \frac{2E_i}{T} \frac{\mathrm{d}\ell_i}{\ell_i}$ $\operatorname{d} E_i = T \operatorname{d} S_i - 2E_i \frac{\mathrm{d}\ell_i}{\ell_i} = T \operatorname{d} S_i - \pi_i V \frac{\mathrm{d}\ell_i}{\ell_i}$
where we defined the directional pressure $\pi_i = -\left(\frac{\partial E_i}{\partial V}\right)_{S, \ell'_i} = -\frac{1}{V} \left(\frac{\partial E_i}{\partial \ln \ell_i}\right)_{S, \ell'_i} = \frac{2E_i}{V}$

representing the change in energy ∂E_i at constant S_i due to a change in the volume $V = \ell_1 \ell_2 \ell_3$ obtained by changing only ℓ_i , so that $\partial V/V = \partial \ell_i / \ell_i$. We finally obtain,

$$E = E_1 + E_2 + E_3 = (\pi_1 + \pi_2 + \pi_3)\frac{V}{2} \qquad dE = T dS - \pi_1 V \frac{d\ell_1}{\ell_1} - \pi_2 V \frac{d\ell_2}{\ell_2} - \pi_3 V \frac{d\ell_3}{\ell_3}$$

For 'practical' values of m, ℓ_1 , ℓ_2 , ℓ_3 , and T, the values of $h^2/8mk_{\rm B}T\ell_i^2$ are much smaller than one, and therefore the sum in Q_i can be approximated by an integral,

$$\mathcal{Q}_{i} = \sum_{j_{i}=0}^{\infty} e^{-\frac{h^{2}}{8mk_{\mathrm{B}}T}\frac{j_{i}^{2}}{\ell_{i}^{2}}} \approx \int_{0}^{\infty} e^{-\frac{h^{2}}{8mk_{\mathrm{B}}T}\frac{x^{2}}{\ell_{i}^{2}}} dx = \left(\frac{2\pi mk_{\mathrm{B}}T\ell_{i}^{2}}{h^{2}}\right)^{1/2} \implies \mathcal{Q} = \mathcal{Q}_{1}\mathcal{Q}_{2}\mathcal{Q}_{3} \approx \left(\frac{2\pi mk_{\mathrm{B}}TV^{2/3}}{h^{2}}\right)^{3/2}$$

Consequently, the details of the shape of the container become irrelevant, given the same volume V, as the separate dependence of \mathcal{Q} on the individual ℓ_i 's disappears.

$$\begin{pmatrix} \frac{\partial \ln Q_i}{\partial T} \end{pmatrix}_{\ell_i} = \frac{1}{2T} \qquad E_i = \frac{1}{2} k_{\rm B} T \qquad \pi_i = \frac{k_{\rm B} T}{V} \qquad S_i = \frac{1}{2} k_{\rm B} + \frac{1}{2} k_{\rm B} \ln \frac{2\pi m k_{\rm B} T \ell_i^2}{h^2}$$

$$E = \frac{3}{2} k_{\rm B} T \qquad dE = T \, dS - k_{\rm B} T \left(\frac{d\ell_1}{\ell_1} + \frac{d\ell_2}{\ell_2} + \frac{d\ell_3}{\ell_3} \right) = dE = T \, dS - k_{\rm B} T \frac{dV}{V} \implies p = \frac{k_{\rm B} T}{V}$$

$$S = \frac{3}{2} k_{\rm B} \left(1 + \ln \frac{2\pi m k_{\rm B} T V^{2/3}}{h^2} \right) \qquad \text{Recall: valid at large } T \text{ for given } V \text{ so that } T V^{2/3} \gg \frac{h^2}{8m k_{\rm B}}$$

Are mixture properties determined by the pure-substance properties of its constituents? **Ideal solution behavior**

Image Credits

Slide 10:

• Movie4e molecules moving Nicolas Phonon Transport on YouTube © Nicolas Lab. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

• Cell membrane permeability — Animated membrane physiology on YouTube © Dr.G Bhanu Prakash Animated Medical Videos. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

2.43 Advanced Thermodynamics Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.