2.43 ADVANCED THERMODYNAMICS

Spring Term 2024
LECTURE 13

Room 3-442
Tuesday, March 19, 2:30pm - 4:30pm

Instructor: Gian Paolo Beretta
beretta@mit.edu
Room 3-351d
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Stable-equilibrium properties of
MIXTURES
(within the simple-system model)

Partial properties
Gibbs-Dalton ideal mixtures
Mixing and separation
Osmotic pressure and blue energy
Stratification
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Experimental measurement of SES properties of mixtures:

Partial properties from properties of isothermobaric mixing

Thermal | Pure 2 Mixture Thermal Mixture
A | reservoir dn; (£ ¢ IS B reservoir Nni,...,n; +dn;,...n,
T, p T, p T, p T, p T, p

Enthalpy of T'p-mixing”
H(T,p,ny,...,n; +dn;,...,n.) — [H(T,p,nl,...,ni,...,nr)—|—h7;7;(T,p)dni]

dni
Hg — H OH
N/ Tpn;

Similarly, we define the volume, energy, and entropy of Tp-mixing
Avm”‘ = v;(T, p,ny) — vy (T, p) Aemlx =¢;(T,p,ny) — e;;(T, p) Asmlx = s;(T,p,ny) — s: (T, p)

They are all measurable and allow the measurement of partial properties, once the pure-substance

AR =

= lim
dn;—0 dnl

properties of the mixture components are known. as a result, we can write
=h; = Ts; = hy + Ah;-nix — sy — TAS?HX = (T, p) + Ah?ﬂix - TASmiX = wii(T, pii)
. Pii .
Pii : : RT'In— ideal gas
pii (T, pii) — (T, p) = / vi(T,p') dp’ = AR — TAs™ = p
p —(p — Dii) Vi ideal liquid or solid

* Recall that the enthalpy is additive for systems in SES at the same pressure.
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Lennard-Jones potential (model of intermolecular forces)
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Are mixture properties determined by the pure-substance properties of its constituents?

Ideal Gibbs-Dalton behavior

Ideal Gibbs-Dalton behavior is defined by

Assumption 1: U =37 nu(T,p,y) = > i nivyi (T, pi)

Assumption 2: S =" n;s;(T,p,y) =D, niSii(T, pis)

Assumption 3: V =>""_ nv;(T,p,y) = njvii (T, pii) Yi  (no sum!)
here the first equalities recall the relations in terms of partial properties.
The assumptions can be interpreted like this:

Mixture Pure ny Pure n; Pure n,
(£ S TR 1 I 1 T, p11 T, pii T, ppr
T, p p— ull(T, p11) —|— v —|— u”(T,p”) _'_ tte _|_ urr(T7 prr)
U,S 811(T7P11) Sm'(T, piz’) Srr(Ta prr)
%4 %4 vV V

Ideal Gibbs-Dalton mixture of ideal gases

RT RT RT
Vi we have vy (T, py) = vi(T,p) = V = nwu(T, pi) = ny
p Pii
RT RT RT Dii Ny
Dii = 7”%7 0= Zpu an = n— ? = Y =Y =  Dii =YD

a i Dii
:ui(T7p7y) — /Jm'(T7 pu‘) = /Ju'(T7 p) ‘l'/ ( a ) dp’ = ,Lbz'z'(T, p) +/ Uiz’(Ta p') dp’
p NOp/T p

Diq RT
—wTp)+ [ (1) + RT I ™ = (T, p) + RT n,
p
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Are mixture properties determined by the pure-substance properties of its constituents?

Ideal Gibbs-Dalton mixtures of ideal gases

RT RT RT
Vi we have v; (T, p;) = vi(T,p) = V = nvu(T, pi) = ny .
p ii
RT RT RT Dii Ty B
Dii = nz7 p= Zpu an = n— ? = Yi =  DPi =Yip

a i Dii , ,
Mi(T,pay) = ;LLii(Ta pn') = Mn‘(T7 p) =+ / (L) dp’ = ,um'(T, p) + / Uii(Tap ) dp
p NOp/T p

Dis RT
= pii(T,p) + /
p 4

+(T,p) + RTln? = 1;(T,p) + RT Iny;

O Opi RT
(Topy) == (54)  =sall,p) = Ringi = sa(T.pi)  w(Topy) = () =valTp) = =
si(T,p,y) o7 ), = Sl ny; = si(T,pa) 0T, py) o ) vi(T, p)
i/ T)
hi(T', p, :( ) = hii (T (L0, y) =T s; — pug + py = wy (T
(T.p,y) 9(1/T) o (1) u(T',p,y) pU; + (T)
Note also that V' = Z V= Z nvi (T, p) (Amagat law of additive volumes)
i=1 i=1
where V' = nv;;(T, p) is called proper volume of i
Mixture Pure ny | Pure ns Pure n,
TR A 1 T7p Tap Tap
T, p u (1) | uze(T) urr (T)
U, S Sll(Tvp) 322(T7p) Srr(Tvp)
g R [ B e
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Isothermobaric mixing of ideal gases

Entropy of spontaneous mixing

SIS IIS SIS SIS SIS SIS IS IS IS SIS IIII IS,
ni, Na,..., Ny
T/

/

p
LA A A

B/

MM

N
AR

NS

N

Remove partitions allowing spontaneous mixing. Using energy, volume, and entropy addi-
tivity for A, and ideal G-D-mixture model for B,

nRT
Up = Z anu(T) Va = Z TliUiz‘(T, p) = 7 Sa = Z nisii(T7 p)

RT’
Up = Z ;U (T") Ve = Z nvu(T', p') = np/ Spr = Z nsu(T", py;)

Energy balance for the isolated system, Ugr — Uy = 0, recalling du;; = ¢, 4(T) dT,

UB’ - UA — Z TLZ[U“<T/ um Z n; /T Cy m =0

Since ¢, 4 (T) > 0 for any T, the integral can only be zero if 77 = T'. Therefore, the volume balance
Vi = Uy yields p' = p.

Entropy balance for the isolated system, Sgr — Sa = siy, recalling ds; = ¢, (1) dT/T — Rdp/p,
so that s; (1", p};) = su(T",p') — Rlny;, yields (for 7" =T and p’ = p)

Sipr = Spr—SA = an si(T', 0 ) — 84 (T, )] anAsmIX Zni[—Rln v = —nRZyi Iny; >0
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Isoentropic mixing of ideal gases

Extracting the adiabatic availability of mixing

Vfﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁm @)
] T no ny 7 n1, N2,..., Ny %
% 7 Z
é T T . T B/ % T %
% % " %
R P G 7 p %

Do the mixing with a reversible weight process. Using energy, volume, and entropy additivity for A,
and ideal G-D-mixture model for B”,

nRT

Ur = Z nit; (1) Va = Z n;vi (T, p) = e SA = Z nisii (T, p)
Upr = Y naug(T") Vi = Z v (T, p) = n];,,T g Spr = Z nisiu (T, py;)

" assuming constant specific

The volume balance Vg = Vi imposes p” /T" = p/T. Thus, recalling p!, = y; p
heats, defining ¢, miz = Y, Yi Cvi, and using
/! /! /! /!

T T T
Sii <T”,p;'z- — szp) - Sii(Ta p) = Cpii In ? — Rln (yz?) = Cuii In ? — Rlny;

the entropy balance for the reversible weight process, Sg» — Sa = 0, becomes
/!

T T//
o . "o o .
0= Sgr — Sp = an[su(T D) — Su(L,p)] = Z 7 |Cy,ii 10 T~ Rlny;| = nfcymiz In T~ RZyi In y;]

and yields 7" = T exp( Y viln yz) (clearly T” < T). Therefore, the energy balance for the weight
process, Ugr — Uy = —W | yields

rev?’

W =Uxy—Ugr = Z nilug (T") — uy (T)] = n o mic(T —T") = ncymicT [1 — exp (

CU maix

Cv,]::m Z y; In ?Jz”
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Isoentropic mixing of ideal gases

Extracting the adiabatic availability of mixing
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Semipermeable (passive transport) vs selective (active transport)
Membranes

P Pl o) o045/103

https://www.youtube.com/watch?v=hxFj8qgejek https://www.youtube.com/watch?v=XbnhmrNNe-w
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Isothermobaric mixing of ideal gases

Entropy of spontaneous mixing (Gibbs paradox resolved)

nq no ni, N2
.o ° .o # . : .. o l.o
T p T, p T, p
n n
?/1:—1 Z/zzl—ylzg2 n=mni+ ne

n
Sir = —nRY yilny; = —nR[y1Iny; + (1 — y1) In(1 — y1)] > 0

For example, for ny =no =n/2, y1 = y2 = 1/2, Si;,; = nR1In 2.
However, if particles 1 and 2 are identical, removing (and adding) partitions,

within the simple system model, changes no SES property. So, in this case S;,, = 0.

nq nq 2”1

T, p T, p T, p
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Information theory interpretation:

Shannon information entropy

Ny, N2,. ..y Ny

Suppose we have r possible types of particles,

with molecular masses My, ..., M,.
The probability to observe a particle of type i is p;

The mean or expected value of the mass is (M) =

With the method of Lagrange multipliers obtain p; =

probability

p

1

N2 0.79
50% 0.5
02 0.21
Ar 0.009
Cco2 0.0005

Shannon information entropy Sr = — Z p; In p;
i=1

Example. Suppose we do not know the y;’s, but we have measured (M).

Classic reference: E.T. Jaynes, Information theory and statistical mechanics, Physical Review 106, 620 (1957).
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0.7

1.6
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7.6
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-ln(p)/-In(0.5)
0

0.3

1

2

7

11

# = y;. Note: p; > 0and >/ p;=1
D i1 PiM;.

The degree of uncertainty, about which M; will be observed next, is measured by the

What is the least biased assignment of y;’s compatible with the measured (M)?
Maximize —) ., p; Inp; subject to the constraints >, p; =1 and >, , p;M; = (M).
exp(—Ay M;)
> exp(—=AyM;)
Inserting these in the constraint, > ' | M;exp(—AyM;)/Z = (M), yields Ay = Ay ((M)).
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Quantum model of a structureless particle in a box:

Ideal gas equation of state for a single particle in a box

For a system consisting of a single particle (n = 1 molecule = 1/N,, mol) of mass m with no internal
structure and only translational degrees of freedom, confined in a parallelepiped-shaped container
with sides ¢, {5, {3 (and volume V = {1/5(3), the quantized energy levels are
St JiJ3
€j1.g2ds = € T €jn T €js = %(E + 2 + €—§> where j1, j2,J3 =1,2,3...,00
The maximum entropy principle implies that the SES probability distribution {pj, ;, ;s } is given by
the solution of the constrained maximization problem
pnax S=-nRY Pjijnjs MPjrjojs subject to Y py =1 and Y pj i is€iegs = E
J1:72-J3 J j J
where ) . = Z;le D o1 2 sa—1- Assigning the Lagrange multiplier 1/kgT to the energy constraint,
and noting that nR = R/Na, = kg (the Boltzmann constant), we find the SES distribution
o= X G/ kD) exP(€i/kBT) exp(=€;,/kpT) exp( =€/ kpT)
J1,72,J3 Q J12g21772 Ql Q2 Q3
where we define the partition functions Q = Q19,Q3, Q; = > exp(—¢;,/kgT). It easy to verify

that the probabilities and all the properties can be obtained from derivatives of the Q,’s and that
T = (8E /0S ) i.e., the Lagrange multiplier indeed represents the temperature

087
dln Q 0ln Q, dln Q;
S = kg <8T81;Q)£:51+SQ+S3 Sy = —ksy pyInp;, = kg (%)& - %quBani

Ji
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Quantum models of particles:

Upper bounded vs unbounded energy spectrum

energy levels e; J=12,.,N

E= Z,— p,e; energy (assuming pH = Hp)

probability p; measures the degree of /}/; /‘/
involvement of level e. in sharing the energy load < w7 / ) SCLLIP
J /7 /
A
S=—kg . p;Inp; entropy measures the ///é//// /
global degree of sharing the energy load among leve /7 /

Entropy, S/k
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§ - expl-e; /kgT)
e ZeXp(_ e, /ksT)
. 15 2 canonical distribution
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Steepest entropy ascent equation of motion models the

time evolution of the state probability distribution) towards SES
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Ideal gas equation of state for a single particle in a box

c h2 ]zz €5, h2
Fori=123 =g, (72) Jz_: exp (- kBT> JZ_: exp (- 8kaT€2)
— QT ¢, InQ; = T — -
(T 4:) dlnQ, = kBTQd + kT ¢; ( oT )ez kgT? ( Jln/; ) kT
E; 1 2F; d¢; dﬁ d/;
i == In Q; i = —dE; Sl E, =T =T | Vg
S T + kgIn Q dsS, Td + T 7 d ds; — E- dsS; — 7
E; 1 E; 2F;
where we defined the directional pressure m; = — (({;Vz ) se .V (aaln Zéi)se’ - Vz

representing the change in energy 0F; at constant .S; due to a change in the volume V = ¢105/5
obtained by changing only ¢;, so that OV /V = 0¢;/¢;. We finally obtain,
E:E1+E2+E3:(7T1+7T2+7T3)K dE = TdS—T('lvd—gl— de—€2— 3Vd—€3
2 ‘4 ly l3
For ’practical’ values of m, {1, {5, ¢35, and T, the values of h?/8mkgT¢? are much smaller than one,
and therefore the sum in Q; can be approximated by an integral,

[ee) 2 42

_n2 3} o __n_s? SmmkgTe2\ /> 2rmkgTV?2/3\ >
Q,; = Ze Skt /0 e BTG dr = (—hf z) = Q=0,900;~ ( 22 )
Ji=0

Consequently, the details of the shape of the container become irrelevant, given the same volume V/,
as the separate dependence of Q on the individual /;’s disappears.

Oln 9; 1 1 kg1’ 1 1 2mmkgT0?
= — E;, = —kgT P = = =k —kgln —=
(aT )a 9T 5 R 72 Si=gke T okeln =05
3 d¢, dléy  dls dV kT
E = kT dE:TdS—kT( )_dE TdS — kgT o — B
T R A iy T Py
2nrmkgTV?2/3
S = §kB (1 + In mmks 1V ) Recall: valid at large T for given V so that TV?/3 >
2 h? 8ka
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Are mixture properties determined by the pure-substance properties of its constituents?

rigid membrane
permeable »
7

only to %
A ; Dirrrrrny

constituent

Mixture in a SES

U, S, V, Ny, Mo, v, Ny
T, D, Uy, Hoy eens By

@ ¢ °
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Sehay el
o2 e8Gs qeel
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Ideal solution behavior

Ideal solution behavior is defined by

Assumption 1: AR =0 Vi
Assumption 2:  As™* = —Rlny;
Assumption 3: Av™* =0 Vi

Ideal GD mixture of ideal gases: (Vaa) =~ (Vag) =~ (Vag) =~ 0

because (raa) > rAf (reg) > B8 (rap) > i

VAA VS TAA r VBB VS T'BB

VAB VS TAB

Ideal solution: (Vaa) ~ (Vgg) ~ (Vag).

VAA VS TAA VBB VS T'BB
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Image Credits

Slide 10:

* Moviede molecules moving Nicolas Phonon Transport on YouTube © Nicolas Lab. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

* Cell membrane permeability — Animated membrane physiology on YouTube © Dr.G Bhanu Prakash Animated Medical Videos. All rights
reserved. This contentis excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.
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