2.43 ADVANCED THERMODYNAMICS

Spring Term 2024 LECTURE 21

Room 3-442 Tuesday, April 23, 2:30pm - 4:30pm

Instructor: Gian Paolo Beretta <u>beretta@mit.edu</u> Room 3-351d Systems with chemical reactions

Chemical kinetics

Near-equilibrium linearization

Onsager reciprocity from Ziegler principle of maximum entropy production rate

© 2024 Gian Paolo Beretta @MIT 2.43 Advanced Thermodynamics

Relation between rates and affinities: far and near equilibrium

For a single reaction mechanism j, $\sum_i \nu_i^{(j)} A_i = 0$, with rates $\dot{\epsilon}_j^{\pm} = k_o^{\pm(j)}(T) \prod_i [N_i]^{\nu_i^{\pm(j)}}$

$$\dot{\epsilon}_{j} = \dot{\epsilon}_{j}^{+} - \dot{\epsilon}_{j}^{-} \qquad \frac{\dot{\epsilon}_{j}^{+}}{\dot{\epsilon}_{j}^{-}} = \exp\left[\frac{Y_{j}}{R}\right] \quad \Rightarrow \quad \dot{\epsilon}_{j} = \dot{\epsilon}_{j}^{+} \left(1 - \exp\left[-\frac{Y_{j}}{R}\right]\right) = \dot{\epsilon}_{j}^{-} \left(\exp\left[\frac{Y_{j}}{R}\right] - 1\right)$$

$$\dot{\epsilon}_{j} = \dot{\epsilon}_{j}^{+} - \dot{\epsilon}_{j}^{-} = 1$$

$$\frac{\partial S}{\partial t}\Big|_{\text{chem}} = Y_j \dot{\epsilon}_j = L_{jj} Y_j^2 = \frac{1}{L_{jj}} \dot{\epsilon}_j^2 \quad \text{where we define} \quad L_{jj} = \frac{\epsilon_j}{Y_j} = \frac{\epsilon_j}{R \ln(\dot{\epsilon}_j^+ / \dot{\epsilon}_j^-)} = \frac{1}{R} (\dot{\epsilon}_j^\pm)_{\text{mean}}$$

As the composition approaches chemical equilibrium, $Y_j \to 0$, $\dot{\epsilon}_j^+ \to \dot{\epsilon}_{jo}^-$, $\dot{\epsilon}_j^- \to \dot{\epsilon}_{jo}^-$, where $\dot{\epsilon}_{jo}^+ = \dot{\epsilon}_{jo}^- = (\dot{\epsilon}_{jo}^{\pm})_{\text{mean}} = R L_{jj}^{\text{eq}} = \kappa [N_*]_o$, and the expressions linearize to $\dot{\epsilon}_{jo}^{\pm} = c_{jo}^- = c_{jo}^{\pm} = c_{jo}^- =$

$$\dot{\epsilon}_j \to \frac{\epsilon_{jo}}{R} Y_j = L_{jj}^{\text{eq}} Y_j \qquad \dot{\epsilon}_{jo}^{\pm} = k_o^{\pm(j)}(T) \prod_i [N_i]_o^{\nu_i^{\pm(j)}} \qquad \frac{\partial S}{\partial t} \Big|_{\text{chem}} \to \frac{\epsilon_{jo}}{R} Y_j^2 = L_{jj}^{\text{eq}} Y_j^2 = \frac{1}{L_{jj}^{\text{eq}}} \dot{\epsilon}_j^2$$

so, near equilibrium, the net reaction rate $\dot{\epsilon}_j$ becomes linear in the affinity Y_j , and the inverse of coefficient $L_{jj}^{\text{eq}} = \kappa [N_*]_o/R$ can be interpreted as the **chemical resistance** to the advancement of the reaction.

Recall:
$$k_o^{\pm}(T) = \frac{A^{\pm}(T)}{[N]^{\nu^{\pm}}} \exp\left[-\frac{\Delta h_{\pm}^o(T)}{RT}\right] = \kappa_{\pm} K_{\pm}^c(T)$$

Detailed kinetic mechanism for the oxidation of hydrocarbons

	$k_{\ell}^+(T) = A_{\ell}^+ T^{b_{\ell}^+} e$	$\exp\left(-E_{\ell}^{+}\right)$	RT)			ſ	
	$k_{-}^{-}(T) = k_{+}^{+}(T)/k_{-}$	$C^{0}(T)$					
	$\kappa_{\ell}(I) = \kappa_{\ell}(I)/I$	$\ell(I)$					I = 5K
Hvdi	rogen: K=8 spec	cies. $I=24$	1 read	ctions			Mothul
j a.				-		10 ⁴	C16 (LLNL), _ Decanoate
	Reactions	A	D	E	_		
1	0+0+M=02+M	1.20E+17	-1	0	ú		
2		5.00E+17	-1	0	ü		
3		1.00E+18	-1	0	tio		iso-octane (LLNL)
4		9.00E+16	-0.6	0	aC		iso-octane (ENSIC-CNRS)
5	H+H+H2O=H2+H2O	6.00E+19	-1.3	0	e		
6		2.20E+22	-2	0	Ļ.		
1		2.80E+18	-0.9	0	0 U	103	Skeletal iso-octane (Lu & Law)
8	H+02+02=H02+02	2.08E+19	-1.2	0	el	10	USC C1-C4 A skeletal n-heptane (Lu & Law)
9	H+02+H20=H02+H20	1.13E+19	-0.8	0	qu		LISC C2H4 n-butane (LLNL)
10		7.40E+13	-0.4	0	n		1,3-Butadiene
11		3.87E+04	2.7	6260	Z		- DME (Curran)
12		2.00E+13	0	0	\		GRI3.0 • neo-pentane (LLNL)
13	0+H2O2=OH+HO2	9.63E+06	2	4000	\		
14	H+02=0+0H	2.65E+16	-0.7	17041			GRI1.2 C2H4 (San Diego) Defore 2000
15		3.97E+12	0	6/1			. CH4 (Leeds)
10		4.48E+13	0	1068		10^{2}	- ···
17		8.40E+13	0	535		Ĩ	
18		1.21E+07	2	5200			
19		1.00E+13	0	3600	``		
20		2.10E+08	1.5	3430		10	0^{1} 10^{2} 10^{3} 10^{5}
21		3.37E+04	2.4	-2110			Number of species K
22		1.40E+13	0	-200		•	Number of Species, N
23		2.00E+12	0	427		- Piser circle	
24	nuz+nuz=uz+nzuz	1.30E+11	U	-1030	Fig. 1	0. Siz	ze of selected detailed and skeletal mechanisms for hydrocarbon fu

Fig. 10. Size of selected detailed and skeletal mechanisms for hydrocarbon fuels, together with the approximate years when the mechanisms were compiled.

Not all independent. E.g., 11-14 = 1-3

Fig.10 in T. Lu and C.K. Law, Progress in Energy and Combustion Science 35, 192 (2009).

Relation between rates and affinities: far and near equilibrium

For a single reaction mechanism j, $\sum_i \nu_i^{(j)} A_i = 0$, with rates $\dot{\epsilon}_j^{\pm} = k_o^{\pm(j)}(T) \prod_i [N_i]^{\nu_i^{\pm(j)}}$

$$\dot{\epsilon}_j = \dot{\epsilon}_j^+ - \dot{\epsilon}_j^- \qquad \frac{\dot{\epsilon}_j^+}{\dot{\epsilon}_j^-} = \exp\left[\frac{Y_j}{R}\right] \quad \Rightarrow \quad \dot{\epsilon}_j = \dot{\epsilon}_j^+ \left(1 - \exp\left[-\frac{Y_j}{R}\right]\right) = \dot{\epsilon}_j^- \left(\exp\left[\frac{Y_j}{R}\right] - 1\right)$$

$$\frac{\partial S}{\partial t}\Big|_{\text{chem}} = Y_j \dot{\epsilon}_j = L_{jj} Y_j^2 = \frac{1}{L_{jj}} \dot{\epsilon}_j^2 \quad \text{where we define} \quad L_{jj} = \frac{\dot{\epsilon}_j}{Y_j} = \frac{\epsilon_j^+ - \epsilon_j}{R \ln(\dot{\epsilon}_j^+ / \dot{\epsilon}_j^-)} = \frac{1}{R} (\dot{\epsilon}_j^\pm)_{\text{mean}}$$

As the composition approaches chemical equilibrium, $Y_j \to 0$, $\dot{\epsilon}_j^+ \to \dot{\epsilon}_{jo}^-$, $\dot{\epsilon}_j^- \to \dot{\epsilon}_{jo}^-$, where $\dot{\epsilon}_{jo}^+ = \dot{\epsilon}_{jo}^- = (\dot{\epsilon}_{jo}^{\pm})_{\text{mean}} = R L_{jj}^{\text{eq}} = \kappa [N_*]_o$, and the expressions linearize to

$$\dot{\epsilon}_j \to \frac{\dot{\epsilon}_{jo}^{\pm}}{R} Y_j = L_{jj}^{\mathrm{eq}} Y_j \qquad \dot{\epsilon}_{jo}^{\pm} = k_o^{\pm(j)}(T) \prod_i [N_i]_o^{\nu_i^{\pm(j)}} \qquad \frac{\partial S}{\partial t} \Big|_{\mathrm{chem}} \to \frac{\dot{\epsilon}_{jo}^{\pm}}{R} Y_j^2 = L_{jj}^{\mathrm{eq}} Y_j^2 = \frac{1}{L_{jj}^{\mathrm{eq}}} \dot{\epsilon}_j^2$$

so, near equilibrium, the net reaction rate $\dot{\epsilon}_j$ becomes linear in the affinity Y_j , and the inverse of coefficient $L_{jj}^{\text{eq}} = \kappa [N_*]_o/R$ can be interpreted as the **chemical resistance** to the advancement of the reaction.

In a complex detailed scheme or reaction network, the set of single-step reactions, j = 1, ..., z, for which we have the rates, may not all be independent of one another, so there is a smaller set of $k = 1, ..., z_{\min}$ linearly independent mechanisms $\sum_i v_i^{(k)} A_i = 0$ such that

$$\nu_i^{(j)} = \sum_{k=1}^{z_{\min}} x_{jk} \, \upsilon_i^{(k)} \quad \Rightarrow \quad Y_j = \sum_{k=1}^{z_{\min}} x_{jk} \, \Upsilon_k \qquad \frac{\partial S}{\partial t} \Big|_{\text{chem}} = \sum_{j=1}^{z} Y_j \, \dot{\epsilon}_j = \sum_{k=1}^{z_{\min}} \Upsilon_k \, \dot{\epsilon}_j = \sum_{k=1}^{z_{\min}} \Upsilon_k \, \dot{\epsilon}_j$$

so the rates $\dot{\varepsilon}_k = \sum_{j=1}^{z} x_{jk} \dot{\epsilon}_j$ of the independent reactions turn out to be coupled ...

Relation between rates and affinities: far and near equilibrium

In a complex detailed scheme or reaction network, the set of single-step reactions, $j = 1, \ldots, z$, for which we have the rates, may not all be independent of one another, so there is a smaller set of $k = 1, \ldots, z_{\min}$ linearly independent mechanisms $\sum_i v_i^{(k)} A_i = 0$ such that

$$\nu_{i}^{(j)} = \sum_{k=1}^{z_{\min}} x_{jk} v_{i}^{(k)} \quad \Rightarrow \quad Y_{j} = \sum_{k=1}^{z_{\min}} x_{jk} \Upsilon_{k} \quad \text{recall:} \quad L_{jj} = \frac{\dot{\epsilon}_{j}}{Y_{j}} = \frac{\dot{\epsilon}_{j}^{+} - \dot{\epsilon}_{j}^{-}}{R \ln(\dot{\epsilon}_{j}^{+}/\dot{\epsilon}_{j}^{-})} = \frac{1}{R} (\dot{\epsilon}_{j}^{\pm})_{\text{mean}}$$

$$\frac{\partial S}{\partial t}\Big|_{\text{chem}} = \sum_{j=1}^{z} Y_{j} \dot{\epsilon}_{j} = \sum_{k=1}^{z_{\min}} \Upsilon_{k} \sum_{j=1}^{z} x_{jk} \dot{\epsilon}_{j} = \sum_{k=1}^{z_{\min}} \Upsilon_{k} \dot{\epsilon}_{k} = \sum_{j=1}^{z} L_{jj} Y_{j}^{2} = \sum_{k=1}^{z_{\min}} \Upsilon_{k} \sum_{j=1}^{z} x_{jk} L_{jj} x_{j\ell} \int_{\mathcal{L}_{k\ell}} \mathcal{L}_{\ell k} \geq 0$$

$$\frac{\partial S}{\partial t}\Big|_{chem} = \sum_{j=1}^{z} Y_{j} \dot{\epsilon}_{j} = \sum_{k=1}^{z} \Upsilon_{k} \dot{\epsilon}_{k} = \sum_{j=1}^{z} \Gamma_{jj} Y_{j}^{2} = \sum_{k=1}^{z} \sum_{\ell=1}^{z} \Upsilon_{k} \int_{\mathcal{L}_{k\ell}} \mathcal{L}_{\ell k} \geq 0$$

$$\frac{\partial S}{\partial t}\Big|_{chem} = \sum_{j=1}^{z} Y_{j} \dot{\epsilon}_{j} = \sum_{k=1}^{z} Y_{k} \dot{\epsilon}_{k} = \sum_{j=1}^{z} Y_{j} \dot{\epsilon}_{k} = \sum_{j=1}^{z} L_{jj} Y_{j}^{2} = \sum_{k=1}^{z} \sum_{\ell=1}^{z} \Upsilon_{k} \int_{\mathcal{L}_{k\ell}} \mathcal{L}_{\ell k} \geq 0$$

$$=\sum_{k=1}^{\mathbf{z}_{\min}}\sum_{\ell=1}^{\mathbf{z}_{\min}}\dot{\varepsilon}_k\,\mathcal{R}_{k\ell}\,\dot{\varepsilon}_\ell\geq 0$$

where the **chemical resistance** matrix ${\cal R}$ is the inverse of ${\cal L}$

so the rates $\dot{\varepsilon}_k = \sum_{j=1}^{z} x_{jk} \dot{\epsilon}_j$ of the independent reactions are coupled. In the **near-equilibrium limit**, $Y_j \to 0 \ \forall j$,

$$\dot{\varepsilon}_{k} \to \sum_{j=1}^{z} x_{jk} \frac{\dot{\epsilon}_{jo}^{\pm}}{R} Y_{j} = \sum_{j=1}^{z} x_{jk} L_{jj}^{eq} Y_{j} = \sum_{j=1}^{z} x_{jk} L_{jj}^{eq} \sum_{\ell=1}^{z_{\min}} x_{j\ell} \Upsilon_{\ell} = \sum_{\ell=1}^{z_{\min}} \sum_{j=1}^{z} x_{jk} L_{jj}^{eq} \chi_{\ell} \Upsilon_{\ell} = \sum_{\ell=1}^{z_{\min}} \mathcal{L}_{k\ell}^{eq} \Upsilon_{\ell}$$
$$\frac{\partial S}{\partial t} \Big|_{\text{chem}} \to \sum_{k=1}^{z_{\min}} \sum_{\ell=1}^{z_{\min}} \Upsilon_{k} \mathcal{L}_{k\ell}^{eq} \Upsilon_{\ell} = \sum_{k=1}^{z_{\min}} \sum_{\ell=1}^{z_{\min}} \dot{\varepsilon}_{k} \mathcal{R}_{k\ell}^{eq} \dot{\varepsilon}_{\ell} \ge 0$$

Nonequilibrium models must satisfy Onsager reciprocal relations near-equilibrium Linearization of rate-affinity (flux-force) relations

The entropy balance gives: $\dot{S}_{irr} = \mathbf{Y} \cdot \dot{\boldsymbol{\epsilon}}$. Maximum entropy (stable equilibrium) is at: $\mathbf{Y}_{eq} = \mathbf{0}$. Suppose your theory assumes: $\dot{\boldsymbol{\epsilon}} = \dot{\boldsymbol{\epsilon}}(\mathbf{Y})$ with $\dot{\boldsymbol{\epsilon}}(\mathbf{0}) = \mathbf{0}$, so that $\dot{S}_{irr} = \mathbf{Y} \cdot \dot{\boldsymbol{\epsilon}}(\mathbf{Y}) = \dot{S}_{irr}(\mathbf{Y})$. Linearize your rate-affinity relation around $\mathbf{Y}_{eq} = \mathbf{0}$:

$$\dot{\boldsymbol{\epsilon}}\left(\boldsymbol{Y}\right) = \underbrace{\dot{\boldsymbol{\epsilon}}\left(\boldsymbol{0}\right)}_{=\boldsymbol{0}} + \frac{\partial \dot{\boldsymbol{\epsilon}}}{\partial \boldsymbol{Y}}\Big|_{\boldsymbol{0}} \cdot \boldsymbol{Y} + \dots = \boldsymbol{L}^{\mathrm{eq}} \cdot \boldsymbol{Y} + \dots \text{ where } \boldsymbol{L}^{\mathrm{eq}} = \left.\frac{\partial \dot{\boldsymbol{\epsilon}}}{\partial \boldsymbol{Y}}\right|_{\boldsymbol{0}} = \left.\frac{\partial \left(\dot{\boldsymbol{\epsilon}}_{1}, \dot{\boldsymbol{\epsilon}}_{2}, \dots, \dot{\boldsymbol{\epsilon}}_{r}\right)}{\partial \left(Y_{1}, Y_{2}, \dots, Y_{r}\right)}\right|_{\boldsymbol{0}}$$

Therefore, the entropy production is a quadratic form of the affinities and the matrix L of coefficients must be **non-negative** (positive semi-definite)

$$\dot{S}_{
m irr} = \boldsymbol{Y} \cdot \boldsymbol{L}^{
m eq} \cdot \boldsymbol{Y} + \dots \ge 0 \quad \Rightarrow \quad \boldsymbol{L}^{
m eq} \ge 0$$

We may also expand $\dot{S}_{irr}(\mathbf{Y}) = \mathbf{Y} \cdot \dot{\boldsymbol{\epsilon}}(\mathbf{Y})$ in Tayor series around $\mathbf{Y}_{eq} = \mathbf{0}$

$$\dot{S}_{\rm irr} = \underbrace{\dot{S}_{\rm irr}(0)}_{= 0} + \underbrace{\frac{\partial \dot{S}_{\rm irr}}{\partial Y}}_{=^* 0} \Big|_{\mathbf{0}} \cdot Y + \frac{1}{2}Y \cdot \underbrace{\frac{\partial^2 \dot{S}_{\rm irr}}{\partial Y \partial Y}}_{=^* L^{\rm eq} + L^{\rm eqT}} \Big|_{\mathbf{0}} \cdot Y + \dots = \underbrace{\frac{1}{2}Y \cdot (L^{\rm eq} + L^{\rm eqT}) \cdot Y + \dots}_{**} = Y \cdot L^{\rm eq} \cdot Y + \dots$$

*:
$$\frac{\partial \dot{S}_{irr}}{\partial Y_j} = \dot{\epsilon}_j + \sum_i Y_i \frac{\partial \dot{\epsilon}_i}{\partial Y_j}$$
 **: $\frac{\partial^2 \dot{S}_{irr}}{\partial Y_k \partial Y_j} = \frac{\partial \dot{\epsilon}_j}{\partial Y_k} + \frac{\partial \dot{\epsilon}_k}{\partial Y_j} + \sum_i Y_i \frac{\partial^2 \dot{\epsilon}_i}{\partial Y_k \partial Y_j}$

But **Onsager** (1931; Nobel, 1968) proved on statistical grounds that the matrix of **generalized conductivities** (and hence also its inverse, **generalized resistances**) should also be symmetric:

$$L^{
m eq} = L^{
m eqT}$$

Nonequilibrium models must satisfy Onsager reciprocal relations near-equilibrium Explicit relations for the case of two rates and two affinities

$$\begin{split} \dot{\boldsymbol{\epsilon}} &= \boldsymbol{L} \cdot \boldsymbol{Y} : \\ \begin{cases} \dot{\epsilon}_{1} &= L_{11} Y_{1} + L_{12} Y_{2} \\ \dot{\epsilon}_{2} &= L_{21} Y_{1} + L_{22} Y_{2} \end{cases} & \Leftrightarrow \begin{cases} \dot{\epsilon}_{1} &= \frac{\det \boldsymbol{L}}{L_{22}} Y_{1} + \frac{L_{12}}{L_{22}} \dot{\epsilon}_{2} \\ \dot{\epsilon}_{2} &= \frac{L_{21}}{L_{11}} \dot{\epsilon}_{1} + \frac{\det \boldsymbol{L}}{L_{11}} Y_{2} \end{cases} & \leftrightarrow \begin{cases} (\det \boldsymbol{L}) Y_{1} &= L_{22} \dot{\epsilon}_{1} - L_{12} \dot{\epsilon}_{2} \\ (\det \boldsymbol{L}) Y_{2} &= -L_{21} \dot{\epsilon}_{1} + L_{11} \dot{\epsilon}_{2} \end{cases} \\ & \mathbf{L} &= \mathbf{L}^{\mathrm{T}} : L_{12} &= L_{21} \qquad \mathbf{L} \geq 0 : \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} \geq 0 \\ & \det \boldsymbol{L} &= a_{1} a_{2} = \det \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} = L_{11} L_{22} - L_{12} L_{21} \geq 0 \\ & \operatorname{Tr} \boldsymbol{L} &= a_{1} + a_{2} = \operatorname{Tr} \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} = L_{11} + L_{22} \geq 0 \qquad L_{11} \geq 0 \qquad L_{22} \geq 0 \\ & \dot{S}_{\mathrm{irr}} &= \boldsymbol{Y} \cdot \boldsymbol{L} \cdot \boldsymbol{Y} = \begin{pmatrix} Y_{1} & Y_{2} \end{pmatrix} \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} Y_{1} \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} Y_{1} \\ Y_{2} \end{pmatrix} = L_{11} Y_{1}^{2} + 2L_{12} Y_{1} Y_{2} + L_{22} Y_{2}^{2} \\ &= L_{11} \begin{pmatrix} Y_{1} + \frac{L_{12}}{L_{11}} Y_{2} \end{pmatrix}^{2} + \frac{\det \boldsymbol{L}}{L_{11}} Y_{2}^{2} = \frac{\det \boldsymbol{L}}{L_{22}} Y_{1}^{2} + L_{22} \begin{pmatrix} Y_{2} + \frac{L_{12}}{L_{22}} Y_{1} \end{pmatrix}^{2} \\ &= \frac{1}{L_{11}} \dot{\epsilon}_{1}^{2} + \frac{\det \boldsymbol{L}}{L_{11}} Y_{2}^{2} = \frac{\det \boldsymbol{L}}{L_{22}} Y_{1}^{2} + \frac{1}{L_{22}} \dot{\epsilon}_{2}^{2} \end{split}$$

Onsager relations in the linear regime as a consequence of the **principle of maximum entropy production rate** (Ziegler, 1958)

Given the **constraint** $\dot{S}_{irr} = \sum_i Y_i \dot{\epsilon}_i$, which is required by the balance equations, assume linear relations between rates and affinities, $\dot{\epsilon}_i = \sum_j L_{ij}Y_j$, so that

$$\dot{S}_{irr} = \sum_{i} \sum_{j} Y_{i} L_{ij} Y_{j}$$
 and $\frac{\partial S_{irr}}{\partial Y_{i}} = \sum_{j} (L_{ij} + L_{ji}) Y_{j}$

Assume \dot{S}_{irr} is maximal subject to the constraint. Using the method of Lagrange multipliers,

maximize
$$\dot{S}_{irr}$$
 subject to $\dot{S}_{irr} - \sum_{i} \dot{\epsilon}_{i} Y_{i} = 0$, i.e., maximize $\mathcal{L} = \dot{S}_{irr} - \lambda \left(\dot{S}_{irr} - \sum_{i} \dot{\epsilon}_{i} Y_{i} \right)$

$$0 = \left(\frac{\partial \mathcal{L}}{\partial Y_{i}} \right)_{\dot{\epsilon}} = (1 - \lambda) \frac{\partial \dot{S}_{irr}}{\partial Y_{i}} + \lambda \dot{\epsilon}_{i} \implies \dot{\epsilon}_{i} = \frac{\lambda - 1}{\lambda} \frac{\partial \dot{S}_{irr}}{\partial Y_{i}} \quad (1) \qquad \begin{array}{c} \text{Ziegler} \\ \text{orthogonality} \end{array}$$

Substitute this back into the constraint, to determine the Lagrange multiplier:

$$\dot{S}_{\rm irr} = \frac{\lambda - 1}{\lambda} \sum_{i} \frac{\partial \dot{S}_{\rm irr}}{\partial Y_i} Y_i = \frac{\lambda - 1}{\lambda} \sum_{i} \sum_{j} (L_{ij} + L_{ji}) Y_j Y_i = \frac{\lambda - 1}{\lambda} 2 \sum_{i} \sum_{j} L_{ij} Y_j Y_i = \frac{\lambda - 1}{\lambda} 2 \dot{S}_{\rm irr}$$

Therefore we must have $2(\lambda - 1)/\lambda = 1$ implies $\lambda = 2$ and we may rewrite Eq.(1) as follows

$$\dot{\epsilon}_i = \frac{1}{2} \frac{\partial S_{irr}}{\partial Y_i} \quad \text{or} \quad \sum_j L_{ij} Y_j = \frac{1}{2} \sum_j (L_{ij} + L_{ji}) Y_j$$

that is,
$$2 \sum_j L_{ij} Y_j - \sum_j L_{ij} Y_j - \sum_j L_{ji} Y_j = 0 \quad \text{or} \quad \sum_j (L_{ij} - L_{ji}) Y_j = 0$$

This holds for all possible combinations of values of the Y_j 's only if $L_{ij} = L_{ji}$, i.e., if the matrix is symmetric.

Nonequilibrium in heat transfer

Fourier law of thermal conduction

Onsager relations and symmetry of the thermal conductivity tensor

Cattaneo law of damped thermal wave

Familiar near-equilibrium, nonequilibrium states steady-state heat flux

$$q''(x) = q''(x + dx) = q''$$

Energy balance:

$$0 = q''(x) - q''(x + dx) = -(\partial q''/\partial x) dx = 0$$

Entropy balance:

$$0 = \left[\frac{q''}{T(x)} - \frac{q''}{T(x+dx)}\right]A + \dot{s}_{irr}'''A\,dx$$
$$\sigma = \dot{s}_{irr}''' = \frac{q''}{dx}\frac{T(x) - T(x+dx)}{T(x)T(x+dx)} \approx -\frac{q''}{T^2}\frac{dT}{dx} = q''\frac{d}{dx}\frac{1}{T(x)}\frac{1}{T(x)}\frac{d}{dx}\frac{1}{T(x)}\frac{1$$

The entropy needed to sustain the steady state is generated by irreversibility.

Familiar near-equilibrium, nonequilibrium states steady-state heat flux

$$q''(x) = q''(x+dx) = q''$$

$$q''(x+dx) = q''(x) - \dot{w}_{rev}'''dx$$

Steady-state spontaneous heat flux in 1D (energy balance requires $\partial q''/\partial x = 0$). The entropy balance yields

$$\sigma = \dot{s}_{\rm irr}^{\prime\prime\prime} = \frac{q^{\prime\prime}}{dx} \frac{T(x) - T(x + dx)}{T(x)T(x + dx)} \approx -\frac{q^{\prime\prime}}{T^2} \frac{dT}{dx} = q^{\prime\prime} \frac{d}{dx} \frac{1}{T}$$

The entropy generated by irreversibility is related to the maximum work extraction lost opportunity

If the fluid element is replaced by a reversible heat engine (entropy balance requires $\partial(q''/T)/\partial x = 0$), the energy balance yields

$$\dot{w}_{\rm rev}^{\prime\prime\prime} = \frac{q^{\prime\prime}}{dx} \left[1 - \frac{T(x+dx)}{T(x)} \right] \approx -\frac{q^{\prime\prime}}{T} \frac{dT}{dx} = Tq^{\prime\prime} \frac{d}{dx} \frac{1}{T}$$
$$w_{\rm rev}^{\prime\prime\prime} \Big|_{\partial(q^{\prime\prime}/T)/\partial x=0} = T\sigma \Big|_{\partial q^{\prime\prime}/\partial x=0}$$

In the 3D general case:

$$\sigma = \underline{q}'' \cdot \underline{\nabla} \frac{1}{T} \quad \text{when} \quad \underline{\nabla} \cdot \underline{q}'' = 0$$
$$\frac{\dot{w}_{\text{rev}}''}{T} = \underline{q}'' \cdot \underline{\nabla} \frac{1}{T} \quad \text{when} \quad \underline{\nabla} \cdot \frac{\underline{q}''}{T} = 0$$

© 2024 Gian Paolo Beretta @MIT 2.43 Advanced Thermodynamics

Familiar near-equilibrium, nonequilibrium states Fourier law of thermal conduction

Proceed by analogy with the near-equilibrium chemical kinetic model

$$\dot{s}_{irr}''' = \underline{q}'' \cdot \underline{\nabla}(1/T)$$
assume $\underline{q}'' = \underline{q}'' [\underline{\nabla}(1/T)]$ with $\underline{q}''[0] = \underline{0}$
linearize: $\underline{q}'' = \frac{\partial \underline{q}''}{\partial \underline{\nabla}(1/T)} \Big|_{\mathbf{0}} \cdot \underline{\nabla}(1/T) + \dots$

$$= \underline{L}$$

$$\dot{S}_{irr} = \dot{\boldsymbol{\epsilon}} \cdot \boldsymbol{Y}$$
assume $\dot{\boldsymbol{\epsilon}} = \dot{\boldsymbol{\epsilon}}(\boldsymbol{Y})$ with $\dot{\boldsymbol{\epsilon}}[0] = \boldsymbol{0}$
linearize: $\dot{\boldsymbol{\epsilon}} = \frac{\partial \dot{\boldsymbol{\epsilon}}}{\partial \boldsymbol{Y}} \Big|_{\boldsymbol{0}} \cdot \boldsymbol{Y} + \dots$

$$= \boldsymbol{L}$$

Define the **thermal conductivity tensor** $\underline{\underline{k}} = \underline{\underline{L}}/T^2$ and obtain the **Fourier law of thermal conduction**

$$\underline{q}'' = -\underline{\underline{k}} \cdot \underline{\nabla}T$$

For example, consider an **anisotropic material**, and assume a 2D temperature field $(T = T(x, y, z) \text{ with } \partial T/\partial z = 0)$ with boundary conditions such that $q''_z = 0$:

Familiar near-equilibrium, nonequilibrium states Fourier law of thermal conduction

© 2024 Gian Paolo Beretta @MIT 2.43 Advanced Thermodynamics

Energy balance: $\rho c_v \partial_t T = -\underline{\nabla} \cdot q''$ with Fourier law: $q'' = -\underline{k} \cdot \underline{\nabla} T$ At steady state $(\partial_t T = 0)$ with <u>k</u> uniform and indep of T, it reduces to $0 = \underline{k} : \underline{\nabla} \overline{\nabla} T$ where the tensor $\underline{\nabla} \overline{\nabla} T$ is the Hessian of T For a 2D symmetric problem: $0 = k_{xx} \frac{\partial^2 T}{\partial x^2} + 2k_{xy} \frac{\partial^2 T}{\partial x \partial y} + k_{yy} \frac{\partial^2 T}{\partial y^2}$ Letting $k = \sqrt{k_{xx}k_{yy} - k_{xy}^2}$ and changing to non-orthogonal coordinates: $\begin{vmatrix} X \\ Y \end{vmatrix} = \frac{1}{k_{wu}} \begin{vmatrix} k_{yy} & -k_{xy} \\ 0 & k \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix} \quad \text{rewrites as:} \quad 0 = k \left(\frac{\partial^2 T}{\partial X^2} + \frac{\partial^2 T}{\partial Y^2} \right)$ The heat flux vector in the original coordinates is $\begin{vmatrix} q_x \\ q_y \end{vmatrix} = \frac{1}{k_{uu}} \begin{vmatrix} k & k_{xy} \\ 0 & 1 \end{vmatrix} \begin{vmatrix} q_X \\ q_V \end{vmatrix} \quad \text{where}: \quad q_X = -k \frac{\partial T}{\partial X} \quad q_Y = -k \frac{\partial T}{\partial Y}$

Cattaneo-Vernotte heat conduction equation

(eliminates the paradox of instantaneous propagation implied by Fourier heat equation)

Assume
$$S < S_{\text{SES}} = S(U, V, \underline{n})$$
. In terms of a constant and uniform parameter $b > 0$,

$$\rho s = \rho s_{\text{SES}} - \frac{b}{2} \underline{q}'' \cdot \underline{q}''$$
 so that $d(\rho s) = d(\rho s_{\text{SES}}) - b \underline{q}'' \cdot d\underline{q}'$

The energy and entropy balance equations, and the Gibbs equation may be written as

$$\partial_t(\rho u) = -\underline{\nabla} \cdot \underline{q}'' \quad \partial_t(\rho s) = -\underline{\nabla} \cdot (\underline{q}''/T) + \sigma \quad d(\rho s_{\text{SES}}) = (1/T)d(\rho u)$$

Combining them yields $\sigma = \underline{q}'' \cdot [\underline{\nabla}(1/T) - b \partial_t \underline{q}'']$ so that assuming $\underline{q}'' = L [\underline{\nabla}(1/T) - b \partial_t \underline{q}'']$

with L a positive constant, assures that $\sigma \geq 0$ and substitution into the energy balance yields

$$\partial_t(\rho u) = -\underline{\nabla} \cdot \underline{q}'' = -L\nabla^2(1/T) - bL \,\partial_t(\underline{\nabla} \cdot \underline{q}'') = -L\nabla^2(1/T) + bL \,\partial_t(\partial_t(\rho u))$$

Assuming constant c_v and ρ so that $\partial_t(\rho u) = \rho c_v \partial_t T$, and defining γ , α and C as noted below, yields the Cattaneo heat equation (1948), which is a damped wave equation

Baumeister, Hamill, Hyperbolic Heat-Conduction Equation—A Solution for the Semi-Infinite Body Problem, J.Heat Transfer, 91, 543 (1969)

© 2024 Gian Paolo Beretta @MIT 2.43 Advanced Thermodynamics

Image Credits

Slide 4:

Image showing size of selected detailed and skeletal mechanisms for hydrocarbon fuels, together with the approximate years when the mechanisms were compiled courtesy Elsevier, Inc., https://www.sciencedirect.com. Used with permission.

Slide 7:

Portrait of Lars Onsager is in the public domain.

Slides 10-13:

Portrait of Hans Ziegler © Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Slide 20:

Figure showing heat flux at wall as a function of time-short time solution, typical temperature profile showing discontinuity at wave front, and map of undisturbed and thermal wake regions © The American Society of Mechanical Engineers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

2.43 Advanced Thermodynamics Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.