2.43 ADVANCED THERMODYNAMICS

Spring Term 2024
LECTURE 22

Room 3-442
Friday, April 26, 11:00am - 1:00pm

Instructor: Gian Paolo Beretta
beretta@mit.edu
Room 3-351d
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Nonequilibrium in
heat, mass, and charge transfer

Logic and ingredients of the
construction
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Parallel logic in the construction of nonequilibrium theories:

Heat transfer vs chemical Kkinetics

Heat transfer in a pure solid Chemical kinetics in isolated mixture

dpu*
Energy balance: o -V Jg Energy balance: %—g =0
, Gpe 25 .
Entropy balance: o —V-Jg+o Entropy balance: i S
No change in composition: % =0 Proportionality relations: n; =) -VZ-(j ¢
Gibbs relation: d(pu*) = Td(ps*) + pdc Assume SESqg: S = Sr(U,V,n)
dpu* dps* dc aSOﬁ" aSOff __1 ey
—T - = — 2N
ot o Mo Z on; T
Combine: T'o =TV -J¢ -V - Jg (])
= ==) [ W &
Assume heat: J; =¢" Jg=¢"/T TZZ,U Z = 2554
V-J,=V-q" Combine: S;, = ZJYJ é;
V- -Js=V-(")T)=(Y-¢")/T+q" V(1/T) Assume Arrhenius law: ¢; = é;r — &
4 4 4 .
Substitute and obtain: o = ¢" - V(1/T) Yy _ In
Assume Fourier law: ¢" =L -V(1/T) it ¥ N
T . o €
Onsager reciprocity: L~ =L = RY_ (6] —¢7)In L

A

q = = —k-VT with
==£/T2 R=k"/T*> R=L"
=V(1/T) L-

J

z<1/T> — g// ﬁ 'g//
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Nonequilibrium in
heat, mass, and charge transfer

General balance equations for the
extensive properties of a continuum
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Ingredients of the general balance equations for the extensive properties of a continuum:

Balance equations for 1D heat and mass transfer

this infinitesimal fluid element has volume 0V = Adx

\/,f " . has energy, amounts, and entropy
Je JE + aJE Ao 0F = pudV = pu*Adx
é)Jxx on; =¢oV =g Adz
In, Jn; + a;z dx 0S5 = psOV = pstAdx
JZ JE + 8@? - and source terms
r @t de .(58 —Trp 0V —arr Ada
T(x), ui(x) T(x+dx),p(z+ do) 084 =810V =8" Ads
d6E) dJg d(on;) dJy, s d(6S) dJg 3
Tt__A — dr T Ada: da:—l—;uzkésk 7——14 - dx + 0Siry
pu*  dJ% dc; dJy, dps*  dJE
= — —— L —I— V’L r — S '{/’
ot dz ot T T2 vk ot de o
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Ingredients of the general balance equations for the extensive properties of a continuum:

Rate of change of a generic extensive property of a continuum

Consider the material contained at time ¢ in volume >,,(¢), delimited by the surface 9%,,(t)
(with local outward normal unit vectors denoted by n). Assume that in the material volume
we can define the mass density (mass per unit volume) field p (z,t). We say that property A is
“extensive” if its instantaneous value for the material inside Y, can be written as

A(t) = / p@h @@y

where a* (z,t) is the locally averaged specific property A per unit mass.
The rate of change of the above integral value of property A for the material volume ¥,,(¢) can
be written as follows (Reynolds theorem)

d dpa* dpa’
dt S (1) S (t) at 0Xm (1) Em (1) at

where in the last step we used the divergence theorem and the fact that for a material volume
the velocity vyy, ~of the area element along its boundary surface coincides with the barycentric
flow velocity v,,, of the continuum.
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Ingredients of the general balance equations for the extensive properties of a continuum:

Diffusive and convective fluxes interms of transport velocities

Amount d A%~ of property A that crosses an infinitesimal planar surface of area df2
in the direction of the unit normal n during the time interval between ¢ and ¢ 4 dt

0A™ " = (v, -n)pa™dQdt = (J9 - n) dQdt

This slide was added after Lecture 22. It is repeated and illustrated in Lecture 23.
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Ingredients of the general balance equations for the extensive properties of a continuum:

Diffusive and convective fluxes interms of transport velocities

With each extensive property A we associate:

e The “property—A transport velocity” field with respect to an inertial laboratory reference
frame, denoted by v 4(z, 1), such that the amount §A®™ of property A that crosses an infinites-
imal planar surface of area df) in the direction of its outward unit normal n during the time
interval between ¢ and ¢ + dt is given by

0A™ = (v, -n)pa*dQdt = (J -n)d2dt  where  J% = pa*v,
defines the Lagrangian flux of property A. In particular, for A = m, the mass transport velocity
v,, (z,t) is the barycentric velocity field, in fluid mechanics usually simply called the (Eulerian)

velocity field.

e The “property—A diffusive flux” field (relative to the local barycentric velocity)

Ja = (Vg —vy)pa” = J5 — pav,,
For a* = v,,, the momentum diffusive ﬂux J, 1s the pressure tensor P, the negative of the
stress tensor 7 of fluid mechanics, usually spht into the isotropic mechanical pressure and the
deviatoric stress tensor J, = P = —1 = p,d — 1/, where p,, = Trace(P)/3 is called the

mechanical pressure. Note also that J., = 0 and therefore
Z M;J,. =0 or, equivalently, J =0

=m;
7

()
e The “property—A convective flux” field (due to the local barycentric velocity)
Sy = pa’vy, = J4 —Jy

For A =v,,, the convective momentum flux is the dyadic tensor J;, = pv,v,,.

—m
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Ingredients of the general balance equations for the extensive properties of a continuum:

Local source/sink densities account for the effects of collisions, and short and long range forces

With each extensive property A we also associate:
e The “property—A source/sink density” field o4 (z,t) representing the local rate of produc-
tion (if positive) or consumption (if negative) per unit volume. It may also be denoted by a"”

and /or split into the sum of two source terms

a" =0, (ia t) — O-il (zv t) + 0-164 (zv t)

where ¢, is typically linked to local effects of short range forces and the general local collisional
redistribution mechanisms that drive the local state towards stable equilibrium, whereas o9
is typically linked to local effects of long range external forces such as gravitational and elec-
tromagnetic. Clearly, if A is a conserved property the source terms must vanish everywhere,
o'y (z,t) = 0.

e The “balance equation for extensive property A” expressing the notion that a change in
time of A(t) for the material volume can only be due to either net overall effects of source/sink /
production/consumption of A within the volume or overall effects of net convection or diffusive
fluxes of A across its boundary surface

e RCLL S TR Ry R B R AP L\
dt S (1) O m () " S (1)

where in the last step we used the divergence theorem, the definition of the diffusive flux J 4,
and the fact that for a material volume vyy, = 1v,,.
e Using the Reynolds theorem for the lhs yields the integral balance equation for A

/ [%a+znwmﬁdV—/ 04— V] dV
sl Ot S (1)
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General balance equations for an extensive property of a continuum

Given an extensive property A with instantaneous value for the material inside 3, given by
AW = [ et @@y
Ym(t)

the integral balance equation for A

a *

/ [ e +z-(pa*gm)] v = / 04— Vg ] dV
Sl O S ()

must hold for an arbitrary material volume ¥.,,(¢) and hence it implies the indefinite A balance

equation

0
% +V-(pa*v,,) =04 —N-J,

Using the relation
Ja=J4 = pa’v,

between the Lagrangian flux J9, the diffusive flux J 4, and the convective flux J = pa*v,,, we

may rewrite it as either

a B3 D*
pa LY=o o a

‘|‘Z‘1A —0A

ot P Dt

where we defined the material derivative
Da*  Oda” oy Va
Dt ot om

which represents the rate of change of the specific density of A as perceived by the fluid element
while it evolves along its trajectory (pathline).
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Interrelations between alternative variables used to account for composition, and on the definition of

barycentric velocity

in terms in terms in terms in terms
of mole of mass of molar of mass
fractions fractions densities densities
Mole fraction of i Yi =n;/n Mx; /M; ci/c piM /p M;
Mass fraction of ¢ T; My /M = m;/m M;c;/Mc pi/p
Molar density of i @ e p x; | M; =n;/V pi/M;
Mass density of 4 i M;y; c P T M;c; =m;/V
Charge density of i | py, Fzuy; c pF zix; | M; = q;/V = Fzi Fz;p; | M;
Mean molar mass | M | =) . My 1/ > (xi/M;) > Mici/c p/ > (pi/M;)
Total mole density | ¢ =n/V p/M > i > i pi/ M;
Total mass density | p Mc =m/V > i Mici > i Pi
Total charge density | p, cF Y . 2y pF Y . zixi/M; | =q/V =F ) zic; | FY_, zipi/M;
Barycentric velocity | v, | >, Miyiv;/M = > .z, > Miciv; /Mec > i Pivi/p

The barycentric velocity is defined by

= v, is the velocity of (mole and mass) transport of species 7, such that

= pxzv- = M;J, . Equivalently,
= Z Milqo%. = Z M;c;v,

where v, = v,,
I = iy, and J

Z_mz Z Pitm,
> M iCi.
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Various extensive properties for a continuum

We say that property A is “extensive” if its instantaneous value for the material inside 32, can
be written as

Alt) =

/ p(z,t) a*(z,t)dV
S ()

where a*(z,t) is the locally averaged specific property A per unit mass, taken from this table:

Extensive symbol per unit per unit | Convective flux Diffusive flux
property A volume, pa* | mass, a* =JY—J4 J 4
Moles of i n; ci ci/p JC =cv = (v; — v,,)¢
Total mole n c=Y.¢ c/p Jf,b = cy J => i Jn,
Mass of 7 m; pi = M;c; T; J%LZ_ = Mic; v,, I, = M,
Total mass m p=7>;Pi 1 JS =puv,, g, = ZZ M;J,. =0
Charge of ¢ qi pg, = Fzici | Fzicifp igi = Pg; Um, lqi = Iz J,,
Total charge q Pe =2 iPy | Pa/P Jg = PgUpm, J,=F )z,
Energy E pe* e* & = petu,, Jr
Entropy S ps* s* 5 = pst v, Jg
Kinetic energy FEyin pv2 v g = pv2 v, g
Potential energy
(eravitational) Epot g PPg Pg SEory = PP9Ym | LEpors = P9 dm
Potential energy
(clectrostatic) Epot el 2% pa/P | LB, 0 = PaP Um Ig g =Pdq
Momentum® PV, Uy, Jy = Uy U, J, =P=-1

tNote: For simplicity, and to obtain the commonly accepted non-equilibrium thermodynamic results, we assume the momentum
density to be given by pv,,. However, note that following Brenner this is not generally correct, because we should define a
momentum velocity v, ... different from v,,. To see how this would modify our subsequent non-equilibrium thermodynamic results,

see D. Bedeaux, S. Kjelstrup, H.C. Ottinger, Physica A, Vol. 371, 177 (2006).
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Nonequilibrium in
heat, mass, and charge transfer

Continuum assumption
Local densities of the extensive properties

from local-equilibrium (bulk-flow)
assumptions
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Continuum approximation vs Knudsen number

Dry air at the Karman line
at sea level (100km altitude)

Dry air 25°C, 1 atm -80°C, 0.01 atm
Avogadro's number Nav 6.02214076E+26  6.02214076E+26 molecules/kmol
Boltzmann constant kg=R/Npy 1.380649E-23 1.380649E-23  kJ/molecule K
Universal gas constant R=kgNpy 8.31446E+03 8.31446E+03 kJ/kmol K
Temperature T 298.15 193.15 K
Pressure p 101.325 1 kPa
Molar concentration [N]=n/V=p/RT 0.0000409 0.0000006 kmol/m*3
Number density (n/V)*Nav 2.461E+22 3.750E+20 molecules/m”"3
Mean interparticle distance [(n/V)*Nav]"° 3.44E-08 1.39E-07 m
Dynamic viscosity of air ¥ 1.85E-05 1.30E-05 kg/ms
Molar mass M 28.962 28.962 kg/kmol
Mean free path A=p/p (mk_BT/2M)"? 6.70E-08 3.84E-06 m
Mean speed w=(8RT/mt M)*2 466.9 375.8 m/s
Collision frequency Z=w/\ 6.97E+09 9.79E+07 1/s
Collisions persin1m”"3 z=Zp/2k_BT 8.57E+34 1.84E+31 1/sm”"3
Mean interparticle distance 0.893(3k_BT/4 t p)*® 1.904E-09 7.682E-09 m

Validity of continuum hypothesis requires Kn << 0.01

L cm  7/mm 0.7mm 70pm 7pm 0.7Um  70nm 7nm

air at sealevel Kn=NL 1E-06 1E-05 1E-04 1E-03 1E-02 1E-01

air at the Karman line Kn=NL  6E-05 6E-04 6E-03 6E-02
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Ingredients of the general balance equations for the extensive properties of a continuum:
Gibbs-Duhem andlocal-equilibrium simple-system bulk-flow relations
dU =TdS —pdV + > . dn, Gibbs relation

B 0 for large n .
U-TS+pV => puin;, = {Eu £ 0 for small n Euler relation

0 for large n

dFu # 0 for small n Gibbs-Duhem relation

9 %
M::(ag>&wm::(ai>T“M

Opts Opa "L Op
di:( ) dT ( ) d ( ) d'Z—idT id 7f_ i'd'
H 3T /o + B p+Z T Tt n; S +3} P+ D i n
N—— ——— J=1 g J, -~
— i Ui Wi = i j dpsi|r

E=U(S,V,n) + smuv;, +mgz + qp — 3mw’r’ m =Y n;M, q=>_ nizF
dE = dU + %vfndm + mu,, dv,, + gzdm +mgdz + pdg + gdy — %w2r2 dm — mwr? dw — mw?r dr
OF
tot __ (

i = (25)
‘ anl S7Van;avm72’;$0;w;r

= l; + %Mlvfn + Mgz + 2, F ¢ — %Miw2r2

U=nu=mu"=Vpu" =Vecu, u=)> yu + (eu —Teur — peu,p) = V505 (eu,p)

S=ns=ms" =Vps* =Ves, s=3 s — (eur), Bu=nea=me*=Vpa'*=Vceu
tot

m n 1 ng My % Hi ot My
axiﬁami = n;M;,m = Zimiyn — Zinmﬂi = 2o = T

P = M, i M,

= Y= —,6 =

VT VY n 1%
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Ingredients of the general balance equations for the extensive properties of a continuum:

Gibbs-Duhem relation in terms of molar and mass specific properties

In terms of molar specific properties

du=Tds—pdv+ ) .pu;dy; — { 0 for large n

eu%“ 2 @ o el Gibbs relation

0 for large n

e £ 0 for small n Euler relation

u—T8+pv—Zimyz-={
0 for large n
deu%—eu%” # (0 for small n

B 0 for large n = o Vp=> v Vi|r
vdp =2y dpilr = {deu + eu%” —eupdT # 0 for small n

—sdT +vdp — ) .y dp; = { Gibbs-Duhem relation

In terms of mass specific properties

0 for large n
eu*dﬁm # 0 for small n

0 for large n
eu* # 0 for small n

du* =T ds* + % dp+ > _.pi dx; — { Gibbs relation
p

u* —Ts" +pv* = .pulz, = { Euler relation
0 for large n

dew* + eu* dﬁm Y Gibbs-Duhem relation

1
—s*dT—l——dp—Zia:id,u;‘:{
P

0 for large n = Vp=p ZZ% Vil |r

dp — Pzixidﬂih = {pdeu* + peu* dﬁm —peu:deT = 0 for small n
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Ingredients of the general balance equations for the extensive properties of a continuum:

Gibbs ana Gibbs-Duhem relation In terms of volume specific properties

In terms of volume specific properties, the pressure disappears from the Gibbs relation

d(pu*) = T d(ps*) 0 forlargen = Opu =T Ips + 314 9%
_ + 2 pidei =9 | dv ot ot ot
d(cu) =T d(cs) ceuSr # 0 for small n Gibbs relation
(pu*) =T (ps*) B o 0 for large n :
(cu) =T (cs) P =i = ceu # 0 for small n DRIER el
—(ps*)dT B L 0 for large n : :
_(cs)dT +dp — > cidp = el o % £ 0 for small 7 Gibbs-Duhem relation
B 0 for large n = Vp =) _.¢; Viilr
dp =2 i dpsilr = {cdeu +cew S — ceur dT # 0 for small n
Where, remember,
Ot Ot — (O
dys = (57) T+ (22) d (552).  dny= —sidT + vydp + ) _ypusg dny
H oT p,n + 8p Tn p+z 0nj T,pn’ " ° +Z} p+23_1/~5 ) ni
—— —— J=1 2 "
o Vi Mig = Hi; dysil
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Nonequilibrium in
heat, mass, and charge transfer

Generalizations of the concept

of heat interaction:
“heat&diffusion” interaction
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Recall how we defined ‘“*heat interactions”...
A and B fixed n and V

T4 dEA = _sEpA—B Gibbs relation for A
dSA _ _5SA—>B dEA :TA dSA

ey GO
@ dEB = §EA—B _ s Gibbs relation for B
B dSB _ 5SA—>B dEB — TB dSB

Energy balance  dE“ + dEP = —6W

Entropy balance  dS* + dSP = 0Sgen = 0 to have max dW
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... and proved the Clausius statement of the second law

A and B fixed n and V

oW _
SEA—B 0 Ta=Tp =T
5EA—>B _ 5SA—>B _ 5EA—>B

TA TB

TA:TB:T } (SEA_)B:T(SSA_)B

pR—

5EA—>B
Jr =
YT TatA
ssA—8 [
s = qa Jg=1Js
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Use the same logic to define “heat&diffusion interactions”...

A and B fixed V
T4 dEA = _sEpA—B Gibbs relation for A

C A
" dSA = —6847F dE4 = TadS* + Z pia dni
@ dnA = —5nA_>B
= @ work W i 3
@ dEB = sEA~B _ s Gibbs relation for B
Tp B 5 | .
pin | dsP = 554-E dB® =TpdS” + ) pip dn;

dnP = oni—"8

Energy balance  dE“ + dEP = —6W
Balance of constituent i dn?* + dn? =0

Entropy balance  dS* + dSP = 0Sgen = 0 to have max dW

T T
o A—B 1B A—B . +tB
oW =0F (1 TA> - g on; (,uzA T HzB)
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... and generalize the Clausius statement of the second law

A and B fixed V
1B 1B
oW =6EA7 P (1- 22 )+ ond ™8 (piaz — ui
|44 < TA)Jri n; 'MATA iB
oW oW
5EA_>B—>O and 5nA—>B_>O Thw=Tp=1T WA= WiB = 4

A—B Yy A—B
oF Zz HiA 577,1 < 5SA—>B < 0

TA T5
Ta=Tp =1 A—B A—B A—B
oA = thip = i SEATE =168+ " pyonf™
)

SEATE ]
B = 32

§84—B
E _5n3-4_’B :
" dt A

I
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Only a fraction of J is q" in a “heat&diffusion” interaction

Z’ Jp=TJIs+ ) il

Using Wi = h; —T'S; rewrite as q" = Jg — Zhi']ni =T (JS — ZSiJm>

i
Therefore, we define the (measurable*) heat flux q" so that
Partial enthalpy

Jp = q// 4 Z hiJni h; = (%((Liz//%))

q// ’

JS — — + E SiJni Partial entropy
T ;
1

—c
T ), n

*De Groot & Mazur call q” the measurable heat flux, but denote it by J;
(please note that their use of the prime differs from our use here).
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Only a fraction of J is q" in a “heat&diffusion” interaction

If constituents carry electric charge i — Wi tot = Mi T Z@'ng
Jg=TJs + ZMJ —Jg=TJs+ Z“@ totdm, = T g + ZMJM + oI
Use Wi = h; —T's; and (*) FZZZ

rewrite as q” =Jg — Zhi']ni —ol" =T (JS — Zsi']m)

i
Therefore, we define the (measurable*) heat flux q//so that

JE _ q// 4 Z hiJni 4+ gOI// ("f) Pa.rtial charge flux du.e to the

diffusion of component i: I;’ =2z;FJ,,

(*) Total charge flux (current density):

q//
JS = 74‘287}]7@% | & ZI” ZZZFJM

*De Groot & Mazur call q" the measurable heat flux, but denote it by Jq
(please note that their use of the prime differs from our use here).
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“Heat&diffusion” mode of interaction between adjacent elements

The energy, entropy, and mole fluxes are related by
tot

1
Jo=1J5 +> N, recall: 7= T and \°" = M}

and, therefore, the divergences of the ﬂuxes are related by
V. -Jg=Vr-J"+7V . -J5"+ >, Vet g +Z AoV - I,
The mass specific energy of the fluid element at (z,t) may be written as
e* = u*(ps*,¢) + 5um + 92 + pgp/p
pe’ = pu(ps*,c) + > . (%Mmfn + Mgz + ziFgo)
where u* = u*(ps*,¢) is the stable-equilibrium simple-system fundamental relation expressing
the specific energy for a surrogate fluid element with the same entropy density and molar
densities but viewed from a reference frame moving with the barycentric velocity v,, and with

the chemical reactions and the gravitational and electrostatic fields turned off. Recalling that

the natural variables of the chemical potential u; are T, p,y, the total potentials, therefore, are
tot

" = (T, p,y) + 3 Mvy, + Mgz + 2z Fp
which results when F is assumed to be a function of S, V| n, —v , 92, and ¢, and the total
potential is defined as

tot (aE) _ (8(106*>)
Hi on,; / dc; /
¢ S? V7E7Um7 Z?SO ¢ S7Q7Um7z7(p

where the second equality follows from observing that (dE)y = V d(pe*), (dS)y = V d(ps*),
and (dn;)y = V dg;.
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