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Ingredients of the general balance equations for the extensive properties of a continuum:

Diffusive and convective fluxes interms of transport velocities

Amount d A%~ of property A that crosses an infinitesimal planar surface of area df2
in the direction of the unit normal n during the time interval between ¢ and ¢ 4 dt

0A™ " = (v, -n)pa™dQdt = (J9 - n) dQdt
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“Heat&diffusion” mode of interaction between adjacent elements

The energy, entropy, and mole fluxes are related by
tot

1
Jg=1dg+ > NS, recall: 7= T and \{°' = ,u%

and, therefore, the divergences of the fluxes are related by
V- Jg=V1-Jp+7V-Jp+> VAT, +> NV
The mass specific energy of the fluid element at (z,t) may be written as
e = u*(ps*,c) + §vs, + 92 + pge/p
pe* = pu(ps*,c) + D¢ (%szfn + M;gz + Zz'FSO)
where u* = u*(ps*, ¢) is the stable-equilibrium simple-system fundamental relation expressing
the specific energy for a surrogate fluid element with the same entropy density and molar
densities but viewed from a reference frame moving with the barycentric velocity v,, and with

the chemical reactions and the gravitational and electrostatic fields turned off. Recalling that

the natural variables of the chemical potential u; are T, p,y, the total potentials, therefore, are
tot

i = (T, p,y) + 3 Mvy, + Mgz + ziFsO
which results when F is assumed to be a function of S, V| n, —v , 92, and ¢, and the total
potential is defined as

tot (BE) _ (8(106*))
Hi on,; / dc; /
¢ S? V7E7/Um7 Z?SO ¢ S?Q?”Tn?Z?@

where the second equality follows from observing that (dE)y = V d(pe*), (dS)y = V d(ps*),
and (dn;)y = V dg;.
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General balance equations for an extensive property of a continuum

The local balance equations for energy, entropy, number of moles, and momentum (equation of motion)
are (for future reference we write each of them in the two equivalent forms :

dpe* De*
AV = p T+ Vg =0
Here p, = F') . ¢;2; is the charge density, aat . ll)) t*
g = —Vp, the gravitational acceleration pPs L0 _ S T
pg is the net gravitational force density), ot Ve Ss=p Dt tVJg=o0
E = —YV the electrostatic field (¢ is the dc; o Dc; ¢ Dp
net electrostatic force density) and, recall, ot +V. lm ~ Dt ;E Zk VikTk

T=—-P= _lym is the stress tensor. v Do

—m o —m

om0 = pTEm Nt = —pVp, — pY
ot Vody Dt y-T PN Pg — Pg VP

Considering that each chemical reaction conserves mass and charge, > . M;v;, = 0 and ), z;v, = 0, from the
above balance equation we may obtain the balance equations for components masses, overall mass, volume,
overall charge, kinetic energy, and gravitational and electrostatic potential energy, respectively,

Also recall that here 1, = ry (2, 1) +V-J% J =M. Vik Tk

denotes the local rate of change ot — P Dt — ! Zk !

of the k-th reaction coordinate b, D Do 1D

g per unit volume (some au- op —|—Z'(,0Qm> = i -+ pZ'Qm =0 p— = e =V U,
thors use the symbol r; to the ot Dt Dt P Dt

denote & it , and 1,2

t}il(;yemlg)ilpui tlj)ndl.enr(r)ltaessj\fj/?k, IOD(2/Um> — V (7‘ . Um) — T V /Um — pfvm.V@g — pq/Um.VSO
so that for them the local rate Dt T - S S
of production/consumption of com- D <SOg> D < Pq¥ / p)

ponent i, in mass per unit of P D = pgm-ngg pT = pqym-Zgo

volume, due to the k-th chem-

ical reaction is v;ry, whereas D(e* — u*)

here it is M;vry). P Dt :z (L ) Qm> — 7. zym
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Nonequilibrium in
heat, mass, and charge transfer

the extrinsic relation for the entropy

production density in terms of fluxes and
forces
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General “entropic form” of the expression for o

e Assume local simple-system equilibrium, with e* = u*(ps*,¢) + 302, + @4 + pgp/p
pe* = pu*(ps*,e) + ¢ (M2, + Mipy + z:F )
M‘got = l; + %szfn + Mzwg + ZZFQO >\t0t S —,LLtOt/T T = 1/T

e Assume that Euler relation + Gibbs relation, d(ps*) = 7d(pu*) + >, A" d¢;, for each fluid
parcel, following its motion, therefore

Dps* Dou* Dc;
lgf =T 5? + Z Aot Fct recall also that Y, = Z NV

e Assume "heat&diffusion” mode of interaction for the non-work interactions between adjacent
elements of the continuum, i.e.:

iSZTl%WJrZ)\gOtim and Jp=Jp +Jp with Jp=-1-v,

where J7, is the energy flux due to work interactions between fluid elements. Therefore,

V-Jg=Vr-Jy+7V - Jp+7V (T v,)+ > VNI, +) N'V-J,

e Combining all the above with the balance equations in the previous slide, yields:

1
o=J§ -Nr+> J, -2A§°t+ZYm+f;rzynﬁ%Z-ym
i k
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o in terms of wme measurable heat flux q "’ in the absence of charge carriers
o= s =Jp VT-I—ZJ -V -I—ZYkrk-l——T Vo, +

Recall (heat&diffusion for the non-work interactions): Jz" = ¢" + ).

1
o= (q"+> hid,,) Nt =30, V() + DYy + 7L VU, + LV v,

Note that h; VT —V (u;7) = —7 V|7 (from p; = h; —T's; and dp; = —s; AT+ dp;| 1)

1 1
c=q" V-1 J Ve + Y+ =1 Vo, — =pu Vv, + LV
4 P k T_ m T m T m
1

1 1
o 7 , _
7= Tmd ’—;T_—T E@ S, - Vpilr + Ek Yka+TCI>

where in the last steps we also defined:

e d=2(p—pn)V- v, +357: (Vu, +Vu.) is the so-called dissipation function (local rate
of dissipation of mechanical energy that gets transformed into thermal energy).

o, =—Tr(r ) /3 and 7’ is the deviatoric component of the local stress tensor, such that
T=—pmd+1. Recall 7= —.J,,, 1is the negative of the momentum flux with respect to the
baricentric flow velocity (decomposed in its isotropic and deviatoric components).

° §(Zym + Vol) = Q(ZQm +Vou,) — g(z v,,) 90 is the deviatoric component of the
symmetric part of the local strain rate tensor.
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o in terms of me measurable heat flux ¢’ and e current density 7"

o=S8m=Jdp -VT+>,J, VX" + > Y+ /T

Recall (heat&diffusion with charge):
Jg =q" + it + e,
where
iq = Fzzzzln

is the diffusion flux of charge.

o ="+ X hidy, +¢d,) N =3, - V() + 3orkYe + /T
Using VA; = =V (u;7) = —h; V7 — 7 Vi |r and pi°* = p; + 2z, Fo yields

oc=q"-Nt—1) 0, -Nyilr —7J,-No+> Y + /T
1

1
T2q// VI — _Zz‘] - Vpilr — _(l” — Pq v,,) - Vo + ZkaYk +®/T

T

O — —

where I"=Jo=J,+pgv,, = F> ,2.J, is the current density and
pg = FD . zic is the charge density.
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o in terms of ¢, I'" and ®: an "extrinsic relation"

7 Extrinsic” because:

e it follows from general balance equations and local equilibrium assumptions
only, and

e it holds for all materials, independently of their particular properties.

1 1
o= T2q VT__Z 'ZM|T—f(iﬂ_ﬂqﬁm)‘Z¢+Zkrkyk+q)/T
Rewrite in order of increasing tensorial character
scalars scail\ars
> rdi~ gron DY
o= TRYp — —— -V
a k 3T —p)MV- U
vectors vectors vectors
— g VT == ) T Ve = (L' = pgvy,) - Yy
tensors
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1, o is the rate of exergy dissipation per unit volume

scalars scaiars
S 3on - DY,
o= r.Y; —— — — -
- k T 3 pP)N U,
vectors vectors vectors

— 4’ VT——Z Vil - (1”—pqﬂm)-2¢

tensors

7 N\

17,1
— 7' =(Vu Voly

Too represents the rate of exergy dissipation per unit volume (exergy with respect
to a reservoir at temperature T) when we drive:

a chemical reaction rate in the direction of decreasing affinity;
a heat flux down a temperature gradient;

a diffusion flux down a chemical potential gradient;

a capillary flow down a pressure gradient;

an electric current down a voltage drop;

a momentum flux down a velocity gradient.
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Force-Flux shorthand notation

scalars scail\ars
—T— 1 rl o
o= ;Tkyk—f g(pm -p)V v,
vectors ) vectors . vectors
0 VT3 d Uiy~ (I~ pum) V7
tenjs\ors Z
+% T %(Zym +Vou,)

Often, for shorthand, this is rewritten formally as

O'IZfJf@Xf

where we define the supervectors J; and Xy, and the superdot product © as
follows

J=Ar;:u—0; ¢ 5 L, " =puy) ; T’ }
©={x; x e : : : }
X={Y; Vv, ; =-m=VT; tVulr; —+Ve ; 735(NVv,+Vor) }
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Nonequilibrium in
heat, mass, and charge transfer

linear relations between forces and fluxes
cross effects and Onsager reiprocal relations

Curie principle
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Material resistance to flux and forces: “intrinsic” relations for o

Off equilibrium each material in its own way tries to restore equilibrium:

e it resists to imposed fluxes J
by building up forces X

The flux—force constitutive
relation characterizes the non-
equilibrium behavior of the material:

X =X(J,I)

In this picture, o is a function of J:

o = ZfJf O XL, L) =0(d, L)

Compatibility
.. $
conditions:

© 2024 Gian Paolo Beretta ~@MIT 2.43 Advanced Thermodynamics

e it resists to imposed forces X
by building up fluxes J

The force—flux constitutive
relation characterizes the non-
equilibrium behavior of the material:

J=J(X,I)

In this picture, o is a function of X:

v= Zf‘]f()—(vz) ®Xf — U(‘X7£)

(@ 7(0,T') = 0 at equilibrium (J., = 0 and X, = 0)

e 0 > 0 off equilibrium

e Onsager reciprocity near equilibrium

e Curie principle for isotropic conditions

e near-equilibrium force-flux constitutive relations may
depend on the local equilibrium potentials; hence, the

| dependence on {I' = {1/T, —pi /T, ..., —pn/T, —¢/T}

Slide 23.13



Direct laws (neglecting cross effects)

o= Z e Y see chemical kinetics
k
11 Lamb law? for
———Pm—p2V-v, Pn—P=-—7bax VU, Newtonian fluid
37T viscosity 1879
1 Fourier law for
—ﬁg” - VT g// = —k thermal VT isotropic material
conductivity 18929
1 .. Fick law for
— ln ' YM\T ln — _—ZDi diffusivityz//Li|T isotropic material
T &= ’ RT 1855
1 1 Ohm law of
_fi‘l -V J, = —+2@ conduction
P 1827
1 1 Navier law' for
—7': = (Yv,, + Vo) 7' =1 wear (Yo, +Vo') Newtonian fluid
T 2 viscosity 1821
T+ 1yield: 7= —pd+n shear (Yo, +Vol)+(n ke — 2 shear W-v, )6
S — S m— S m—
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Onsager nonequitibrium Cross effects and e Curie symmetry principle

Each flux may be a function of all the forces, J; = J;({X}), however, (Pierre
Curie,1894): the symmetry of the cause is preserved in its effects. There-
fore, e.g., in isotropic conditions, fluxes and forces of different tensorial char-
acter cannot couple.

Force| Yy -7V -v, -wmVT -7Vuir -7¥¢ #(Vv, +Vu,)
Flux ® X X :
chemical
Tk % kinetics
Lamb
Pm =P % M g9
9 Fourier = Dufour Peltier
4 ' 1822 1872 1834
7 . Soret Fick Reuss
—Mi 1879 1855 1807
7 ) Seebeck! Quincke Ohm
—4 1821 1859 1827
i ) Navier
= ) 1821

1 : First discovered by Volta (1787) and later rediscovered by Seebeck.
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sketch of Onsager’s original proof

Onsager TECiPFOCity standard proof from microscopic reversibility

Onsager (1931) assumes:

At local stable equilibrium states, ; : o
(1): linear regression towards equilibrium

gz-%cq(ﬁ,C]_,...,Cn) . e
Q; = L,‘ka = —M,-j(oq = ajq)
In general, for non-equilibrium states,

with M,‘j = Likgkj-

§=5(0,c1,...,Cny00,...,0m) (2): Boltzmann's probability distribution
thus  Seq(B,€) = (3, €, a%(d, €)) pa(a) = C expl—(5eq — §(a))/ k]
Since 8.q maximizes § for given & and ¢, \ith C such that I pe(a)da=1.

95 /0a1j]eq = 0 (3): microscopic reversibility on the average
3(a) = o —gi(@i—at) (g —at) +. .. (ai(t)aj(t +7))pg = (ai(t + 7)aj(t))pg
where gijj = —19°8/0;00|eq > 0. that is (aidy)pg = (Qitj)pg
Define the non-equilibrium forces driving  Proof of reciprocal relations:
relaxation towards equilibrium (2)+(3) imply: (i Xi)pg = —ksdi

(3eq — 5()) Then, (1)+(3) yield

_ — el e
Xe= 2228 _ _g(a—ag) | .
k kpLji = —(@idj)psg = —(Qij)ps = KaLjj
G.P. Beretta (Denver, Nov.15, 2011) Steepest Entropy Ascent C.W. Rice ASME Lecture 19 / 54

This slide was not discussed in class. It was added a posteriori as useful reference in response to a student's request.
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Orthogonality relations yield Onsager relations in the linear regime as a consequence of the

principle of maximum entropy production rate (zieger, 195s)

Given the constraint ¢ = > .J; ® X, which is required by the balance equations, assume
linear relations between fluxes and forces, J; = Z L - ©® X, so that

Xz :Z)—(J'@éjf'_ éijG‘Xj

o J

U:ZZ}_{i@éw@)_{j and |
7 J J
Assume ¢ is maximal subject to the constraint. Using the method of Lagrange multipliers,

maximize o subject to o — Z.L ® X, =0, i.e., maximize L =0 — A (a — Z-ii @)_(i)

oL do A—1 Oo Ziegler
0= ((‘3}_{)1 = (1= 0X; i = L= A 0X; (1) orthogonality
Substitute this back into the constraint to determine the Lagrange multiplier:
1 do A —
——Zi:)_@@a i— ZZX@L +L)OX, = A

Therefore we must have 2(A — 1)/A =1 1mp11es )\ = 2 and we may rewrite Eq.(1) as follows

1 0o 1
L=spx, @ 2L;0Xi=5) &L;+L,)0X
J

J
that is, 225”@)( Zé@.j@)_(j—ZQjZo)_(j:o or Y (L, ~L)oX;=0
J J

J

This holds for all possible combinations of values of the X ;’s only it é@,j = éji, i.e., if the matrix
1s symimnetric.
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Orthogonality relations in the nonlinear regime as a consequence of the

principle of maximum entropy production rate (zieger, 195s)

Given the constraint ¢ = > . J; ® X, which is required by the balance equations, assume
nonlinear relations between fluxes and forces, J; = J;({X}), so that

0 0d ;
o=Y X;0L{Xs}) and L=Ji+) X;0-Z

Assume ¢ is maximal subject to the constraint. Using the method of Lagrange multipliers,
maximize o subject to o — Z-li ® X, =0, i.e., maximize L =0 — A (a — Zl"' @)_(Z-)

[ 0LN do 0J Ziegler
0= (8)_@-)1 = (1= 0X; = Ji= (A - 1)2 X0 5% 0X; (1) orthogonality

Substitute this back into the constraint, to determine the Lagrange multiplier:

0L IR > AT IS,
POl = AT O g, O T A T S S X 0 (X o X,

Therefore, the nonlinear relations J; = J;({X}) must satisfy the orthogonahty condition

20X @ Je({Xk})
Jl' —J X
Sy X e X @XEZJ ({ it)

This holds for all possible combinations of values of the X ,’s.
For example, for the linear relation J; = > jéz’j ®X ; it reduces to the condition J; = )| jéﬁ.@)_( j

which we already know requires éﬂ, = ézy
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Material resistance to flux and forces: steepest entropy ascent

/!

— const

When an external action keeps a fluid or solid element
away from equilibrium, its entropy is lower than the
maximum value allowed by the values of the conserved
quantities and the symmetries of the problem. The
material reacts by exhibiting a spontaneous tendency
to return to equilibrium: if the system constraints al-
low simultaneous flows of multiple conserved quanti-
ties (energy, chemical species with or without electric
charge, ...) the different flows and gradients collab-
orate in searching for the direction (in state space)
of steepest entropy ascent with respect to a
local metric G that represents how the combined
mechanisms that govern its internal dynamics resist
to the evolution of the state towards certain direc-
tions (in state space) more than others. This metric
thus determines the local direction of evolution. The
collaboration of different flows and gradients give rise
to coupling phenomena. If the state is not far from
equilibrium, the connections between flows and gra-
dients can be linearized, and the symmetry of G (any
metric is symmetric) implies the Onsager reciprocity

principle.
G.P. Beretta, "The fourth law of thermodynamics: steepest entropy ascent."
Phil. Trans. Royal Society A 378: 20190168 (2020).
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Material resistance to flux and forces: steepest entropy ascent

/!

— const

Because of the anisotropy, the material offers less resistance
to heat flux along the highly conductive principal direction
than in any other less conductive directions. This is repre-
sented by the red ellipse, which represents the locus of the
tips of all the heat flux vectors ¢” to which the material
offers the same dissipation rate, defined by the quadratic
form ¢” - G - ¢" where the tensor G is a local state property,
the thermal resistivity tensor of the material.

The local entropy production rate per unit volume o is given
by the scalar product of the temperature gradient, the vec-
tor —VT', and the heat flux vector ¢”. The fourth law here
says that the material will choose, among all the possible
equally-dissipative heat-flux directions, the one that maxi-
mizes the local entropy production rate. The figure shows
that among all possible directions, it is the solid blue vec-
tor ¢” that maximizes its orthogonal projection onto the
red vector —V7T. Near equilibrium this is the geometrical
version of Onsager’s linear theory of irreversible thermo-
dynamics, and the fact that G is a metric (any metric is
symmetric) implies automatically the Onsager reciprocity
principle with no need of further assumptions. It can even
be extended further from equilibrium, at least as far as
the local equilibrium approximation keeps giving reason-
able values of the local properties.
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Material resistance to flux and forces: steepest entropy ascent
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Material resistance to flux and forces: steepest entropy ascent

0
N

Constant entropy contours—om the
'plane’ of constant energy and cer
stant otherconserved propertie

/! /! /!
q =g, e + g€,

oT oT
VT = 8—$1Q1+_62
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Material resistance to flux and forces: steepest entropy ascent

€

A
Constant entropy contours—om the
‘plane’ of constant energy andcen- P
stant other conserved propertie e G
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Material resistance to flux and forces: steepest entropy ascent

€

A
Constant entropy contours—om the
‘plane’ of constant energy andcen- P
stant other conserved propertie e G

/! /! /!
q =g, e + g€,

T T

_ 8371
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We may call Fourth Law the statement of existence of metric G

The Fourth Law is a statement of existence
of the nonequilibrium metric G, a property
defined for every state of the system (re-
member the first lectures: the words sys-
tem and state are loaded words!). This
statement parallels that of the First Law
and the Second Law, which for any (well-
defined) system are essentially statements
of existence of the properties energy and
entropy, respectively.

/1 G 7 -
q * * q — COI]S t G.P. Beretta, "The fourth law of thermodynamics: steepest entropy ascent."

Phil. Trans. Royal Society A 378: 20190168 (2020).
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“Not near but not too far” from SES (so that the assumed local equilibrium Gibbs relation still holds):

force-flux relations from SEA (steepest entropy ascent)

Flux picture constitutive rela-
tion:

c=JoX

X = X(J,T)

SEA principle: given J and T’
there is metric G, (J,I') that
makes the direction of X be that
of steepest entropy ascent:

max| : JOX-Ax X0G,0X
X J.I T

(8/6X);r =0 = J—22x G, O0X =0

R=G, (J,[)"'/22ax(J,T)
X=RJ,[)oJ

Near eq.: B(J,T) - R, (L)
is nonnegative and symmetric
since G, is a metric.

Note: Ax =1/2makesG, =L,

-1
éo _éo

Force picture constitutive rela-
tion:

SEA principle: given X and I’
there is metric G (X,I') that
makes the direction of J be that
of steepest entropy ascent:

: XOJ-AJO

163

JQJ

Near eq.: L(X,T) = L (T)
is nonnegative and symmetric
since G ; is a metric.

Note: Aj =1/2 makes G, =R,
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The Fourth Law: existence for every state of a local nonequilibrium dissipative metric G

As documented in [1], forty years of nonequilibrium theories — apparently diverse, often inde-
pendently, and still mostly unaware of the interconnections — incorporate the model of dissi-
pative dynamics in ways that are all essentially equivalent to the principle of local steepest
entropy ascent. In particular, without claiming completeness:

variational principles (>1931: Onsager, several authors: see e.g. review |2])

maximum entropy production principle (1958: Ziegler; 1972: Edelen)

nonlinear SEA equation of motion for quantum thermodynamics (1981: Beretta)

steepest entropy ascent (>1984: Beretta, Gyftopoulos, Park, Hatsopoulos)

metriplectic formalism (>1984: Morrison, Kaufman, Grmela)

least action in chemical kinetics (1987: Sieniutycz)

Onsager’s principle: a unifying bio-theme (>1989: Morel, Fleck [3])

law of maximum entropy production, LMEP (>1989: Swenson)

constructal law (>1996: Bejan)

GENERIC! (>1997: Grmela, Ottinger)

gradient flows (>1998: Jordan, Kinderlehrer, Otto, Mielke)

quantum evolution with max ent production (2001: Gheorghiu-Svirschevski)

maximum entropy production principle, MEPP (2003: Dewar, Martyushev)

large deviation theory (>2004: Evans, Touchette, Peletier)

fourth law of termodynamics and LMEP (>2006: Morel, Fleck, Swenson [4])

applications of SEA to transport phenomena (>2014: von Spakovsky, see e.g. [5])

[1] G.P. Beretta, Phil. Trans.Roy.Soc.A 378, 20190168 (2020). [2] P. Van and R. Kovécs, Phil. Trans.Roy.Soc.A 378, 20190178 (2020).
[3] R.E. Morel, G. Fleck, J.Theor.Biology 136, 171 (1989).
[4] R. Swenson, Chemistry 18, 333 (2009); R. Swenson, Phil. Trans.Roy.Soc.A 381, 20220277 (2023).
[5]
h

5] G. Li, M.R. von Spakovsky, C. Hin, Phys.Rev.B 97, 024308 (2018); G. Li, M.R. von Spakovsky, Phys.Rev.E 98, 042113 (2018).
For the proof of equivalence of SEA and GENERIC see A. Montefusco, F. Consonni, G.P. Beretta, Phys.Rev.E 91, 042138 (2015).
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More on Steepest Entropy Ascent

@ Strength of symmetry and geometric considerations
@ Curie principle

@ Steepest Entropy Ascent?

SEA guarantees thermodynamic consistency par— )fgatelﬂ S

Near equilibrium it entails Onsager's reciprocity "

Far from equilibrium it generalizes Onsager’s principle c=JoX =

A metric is positive and symmetric J

Boltzmann equation can be cast as SEA

Fokker-Planck equation can be cast as SEA

Chemical kinetics (standard model) can be cast as SEA
Quantum thermodynamic models can be cast as SEA?

@ Deep connections with recent hot topics in mathematics:
o Information geometry — Amari, Nagacka, Methods of information geometry, Oxford UP, 1993.
e Gradient flows in metric Spaces — Jordan, Kinderlehrer, Otto, SIAM J. Math. Anal. 29, 1 (1998).
Ambrosio, Gigli, Savare, Gradient flows in metric spaces and in the Wasserstein spaces, Birkh&user, 2005. Mielke,
Renger, Peletier, JNET 41, 141 (2016).
o L*-Wasserstein metric and evolution PDE’s of diffusive type — wasserstein distance in

probability space: Kantorovich-Rubinstein (1958) and Vasershtein (1969).
G.P. Beretta (U. Brescia) Steepest entropy ascent Thermocon2016, 19Apri6 18 / 23

This slide was not discussed in class. It was added a posteriori as useful reference in response to a student's request.
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More on Steepest Entropy Ascent

with respect to the G( )
systems’ metric tensor field Y

Steepest Entropy Ascent

The geometric construction is
simply summarized by defining
Y. B: %) the SEA projection operator

- —|/=k — Pl = o
(Tl G Ty) = oot @) = @)~ X0 %) =10-2 6%

(¥

where the nonequilibrium po-

(1) Tangent |H§EA) o< G~ |dc) tentials (3; of the corlnserved
State |y) / generators of the motion are
¢, = (Y;1L,) = 0 \ 0 = ky(Pc|TT) nonlinearly related to v by the

orthogonality conditions
The corresponding SEA evolution equation is S g
(\UJ|G |(DC) =
||_|§EA) = 1 G Hoe) = 1 G llo— Zﬁ,’\u,‘) where |®¢) is the dimen-
’ d i sionless constrained variational
derivative of the entropy.

Beretta, Lecture Notes in Physics 278, 441 (1986). See also: Beretta, Reps. Math. Phys.
64, 139 (2009) presented in Torun, Poland for Kossakowski's 70th birthday.
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More on Steepest Entropy Ascent

They emerge from the
SEA construction

Multipliers 3; are not preset!

The 8;'s are defined by SEA orthogonality condition (V;|G~|®¢) = 0, i.e., by the system
of equations >, (V;|G 1)) Bi(y) = (V|G !|®), which solved with Cramer’s rule, yields
the constrained variational derivative as a ratio of determinants

|®) V1) W»)
(PIGTHW1)  (Wa]GTHWL) oo (Wa|G W)
(PIGHW,)  (Wa|GHW,) - (Wa]G W)
D) =0 =) Bi|v;) = e =
,- (Wi|GTHWy) - (Wi G H W)
(Wi|GHW,) - (Wi G W)
where ¢1,...,¢, is a subset of the conserved properties ¢;'s such that the variational
derivatives W1, ..., WV, are linearly independent. By virtue of this choice, the determinant

at the denominator is always a positive definite Gram determinant.

see, e.g., Beretta, Phys.Rev.E, 73, 026113 (2006) and Beretta, Rep.Math.Phys., 64, 139 (2009)
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More on Steepest Entropy Ascent

with respect to the é( )
systems’ metric tensor field Y

Steepest Entropy Ascent

(w1 The nonequilibrium potentials 3;()'s are the
'Y B %)) solution of the system of equations
i 7 D (WG Bi() = (W67 ®)
TAGIT) = st | £ ac) = @) - K pil¥) "

Defining the overall nonequilibrium affinity
or overall degree of disequilibrium

A =G e - B

¥() ~\ Tangent [[T5F4) o< G~ |dbc)

The SEA evolution equation takes various

equivalent forms the entropy production ratef takes the forms
\ 1 A
m?ﬂz;c*@—zﬁmwﬂ o = Ms = (®[M,) ks = (®c|M,) ko = M
i k R
I 2~y oM - B(¢C|G [®c) = (Ny|G|N,) keT
= =G dc) = G1
T kBT 57 B AlA kB 48 T°
where M is our nonequilibrium Massieu - ( IA) = T | d(t/T)
operator [0V /d7) = ki |®c) Where the speed of evolution along the SEA

trajectory in state space is

= /(N ¢|n,)

M(v) = S(v) — ks Z Bi Gi(7)

Beretta, Phys.Rev. E 90, 042113 (2014).
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More on Steepest Entropy Ascent

SEA Variational Statement

Let G(v) be the tensor field defining the
internal metric used by the system to sen-
se distances between states and length of
trajectories in state space. Then,

1N, || dt = \/(nﬂ,| G|N,)dt=dl=¢dt

is the distance traveled during dt.

(IT,| G I1,) = gr—" i |H7)

Variational Statement: For a given distance
traveled, the tangent vector [[1,) maximizes
the (local) entropy production rate

o =Ms = (o[,)
subject to the conservation constraints

an — (wf“_I’Y) —

G.P. Beretta (U. Brescia)

Four rules of thermodynamics

Introducing Lagrange multipliers (indepen-
dent of I, but will be functions of ), we
need to find the unconstrained maximum of

ZB,

T N
= (o|M,) )- (M. 61

Setting

ST, = 19) = 8 1w) —rin) =

yields the SEA general evolution equation

My) = = 612 |A)
T

GTVe - v

1
and substitution back into the constraints
yields the Lagrange multipliers through the
system of equations

> (WG Bi(y) =

i

where
A) =

(Vj|G7®)

Barcelona, May 22, 2019
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More on Steepest Entropy Ascent

GENERIC merges SEA with symplectic machinery

The entropy of non-equilibrium states de-
pends on many more macroscopic properties

§ - S(U n7 aqlow’ afaqt)

Neglecting the fast variables, i.e., assuming

A A

§= §(U, n, éslow)

Ottinger and Grmela (1997) introduce the
GENERIC evolution equation, which in effect
adds the idea of steepest entropy ascent (ir-
reversible dynamics) to the powerful Hamil-
tonian and symplectic machinery of reversi-
ble dynamics. The reversible/irreversible evo-
lutions of the slow variables are generated by
the gradients of an energy functional E(4
and an entropy function S(4

—slow)

rrev 5E(§slow) MIII 55(
5azlow 53210W

sl()w)
slow).

d aslow

dt

Although GENERIC functionals are typical-
ly global while SEA functionals are local, we
have shown their essential equivalence.
In our notation, the dissipative part and
degeneracy condition of GENERIC are

MN,) = M|d) with M|W;,)=0Vi

Thus, in terms of the SEA projection operator

PLulo)=[oc) =0~ 5w

we have the essential equivalence
A 1
M==G"Py
T
provided of course that the chosen state

variable and conserved properties are the
same.

Grmela, Ottinger, Phys. Rev. E 56, 6620 (1997).
Montefusco, Consonni, Beretta, Phys. Rev. E 91, 042138 (2015)-

G.P. Beretta (U. Brescia)
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More on Steepest Entropy Ascent

Gradient flows are SEA-like dynamical systems

Let the states v be points of a Rie-
mannian manifold (M,G) and as-
sume S a (dimensionless) functional
on M. The gradient flow of S on
(M,G) is a dynamical system in M
given by the differential equation (in
dimensionless time)

T%) = |gradS).)

The metric tensor G is an essential
element of the notion. It converts
the differential DS of S, which is a
cotangent vector field, into the gra-
dient of S, which is a tangent vector
field: for all vector fields v on M

(diff S|v) = G(gradS,v)

Therefore, for all vector fields v along ~

(diffS|, |v) = @H(gradSH,v) e (T%,U)

The rate of change of the entropy is

d5(%) dvy A (dy dy
kB dt = (dlﬂ‘SH a kB = ny E, E kBT
to be compared with the SEA
_(d] e |dy
U_'<m-G7dt>hﬁ

The main differences between SEA, the dissipative
part of GENERIC, and gradient flow formulations stem
from the technical nature of the bilinear forms adopted
to define gradients.

Jordan, Kinderlehrer, Otto, SIAM J. Math. Analysis 29, 1 (1998). Otto, Comm. Par. Diff.
Egs. 26, 101 (2001). Mielke, Nonlinearity 24, 1329 (2011). Sieniutycz, Chem. Eng. Sci. 42,

2697 (1987).
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A related, but more general nonequilibrium law of nature, that so far escaped a formal mathematical formulation:

Bejan’s “constructal law” of design and evolution in Nature

(Bejan, 1996): “For a finite-size flow system to persist in time (to live) it must evolve such
that it provides greater and greater access to the currents that flow through it.”

(Bejan and Lorente, 2004): “The constructal law is the statement proclaiming the existence
and the time direction of the evolution of configuration. It is far more general than ‘maxi-
mum entropy production’. It is not a statement of optimality (min, max), end design or destiny.
No flow system is destined to end up in a certain configuration at long times.”

“In 1996, the constructal law was formulated and proposed to expand thermodynamics in a
fundamental way (...) to recognize that there is a universal phenomenon not covered by the
first law and the second law. That phenomenon is the generation of configuration, or the
generation of ‘design’ in nature. All thermodynamic systems in nature are flow systems (i.e.
live, non-equilibrium systems), and they all have configuration. If they do not have it, then
they acquire it, in time. The generation of configuration is ubiquitous, like other phenomena
covered by other ‘laws’ in physics. Biological systems are configured. Geophysical systems are
configured. Engineering and societal systems are configured. The configuration phenomenon
unites the animate with the inanimate.”

Bejan claims “that this universal phenomenon is covered by the constructal law. This law
accounts for a natural tendency in time (from existing flow configurations, to easier flowing
configurations). This tendency is distinct from the natural tendency summarized as the second

law.”

Text excerpts from Adrian Bejan and Sylvie Lorente, The constructal law of design and
evolution in nature, Philos. Trans. R. Soc. Lond. B, 365, 1335 (2010)
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While the state evolves towards the steady state with minimum global EP (or the SES)
maximal local EP selects the hydrodynamic pattern

Rayleigh-Benard 2D rolls in horizontal layer of fluid heated from below as a function of
Rayleigh number R (Woo, 2002). A slow decrease in R is allowed with time.

Sgon = J[JodV

4 T I I
3 = ]
‘ W 2 iy
3
1| -——-
RC
0 Loy Loy o Lgvan 0
Woo, Phys. Rev. E, Vol. 66, 066104 (2002). 10° 10° 10° 109
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While the state evolves towards the steady state with minimum global EP (or the SES)
maximal local EP selects the most efficient flow pattern

Flow in a porous medium heated from below:

g
Cellular
Quiescent, flow
thermally stratified pattern
/~ T, / fuid Cooled
/

7 T

Hcalcd

o

Ray < 1708 Ray > 1708

Nuy = 1 Nug > 1

|t -
l‘ L >
Figure 4. Horizontal layer saturated with fluid and heated from below.

Figure 5. The extreme in which the flow consists of many vertical and slender counterflows.

Figures from: A. Bejan, Int. J.
Energy Res., 27, 859 (2003).

¥
8y L
T 0
Q==X I‘_ 2[7_.4 Th=Tc+.ﬁT
Figure 7. The extreme in which the flow consists of a few isolated plumes.
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Maximal local EP (SEA) implies minimum global EP at steady state

Glansdorff and Prigogine (1954) noted that assuming the following broad set of condi-
tions:

e stationary boundary conditions, dI'/dt|, = 0 ®5=35 (@) with all @& conserved
e no convection and no reactions, so that X = VI .d_— = _V.J with J = J,

o linear regime, J=LOX, 0 =XO0OLOX dt 93 or 82A_

e constant Onsager conductivities, dL/dt = 0 o[ = 5 _ SA
Then*: - -~ 0u ou 8@8@ -

da 0% dA
gen - ‘r_ e ‘r_ — ‘r<
ﬂ d Qﬂ J® d 2/// dt 6u8u d O

This means that the free fluxes and forces adjust until the system reaches the stable sta-
tionary (steady) state with minimum S, for the imposed fluxes and forces.

If instead no fluxes nor forces are imposed, i.e., the systems is isolated, than the initial fluxes
and forces adjust until they vanish and the system reaches SES.

For variable conductivities, dL/dt # 0, the theorem loses validity.

* Proof:

dS,en dL
g // —dV // X@L@XdV—Z///JG)—dV+ X —@XdV

// J@—dV // J@ﬂdv W ///—@v Tl
[l = [ GG = [f] G = Jf] G <o
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Maximal local EP (SEA) implies minimum global EP at steady state
Unsteady

T =
T +AT

[
T +AT

q. = —kdT /dx
o= (dT /dx)’k/T?

Equilibrium
| AT
i q, = —kdT /dx l T : T
' o = (dT /dx)’k/T? ! >
0 x=—-L 0 x=1
Seen = 2(AT)?KA/L - Sgen =0 (minimum)
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Image Credits

Slide 35:
Text excerpts about constructal law courtesy of National Library of Medicine.
Slide 36:

Figure showing Rayleigh-Benard 2D rolls in horizontal layer © American Physical Society. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Slide 37:

Figure 4, Figure 5, and Figure 7 © John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/fag-fair-use.
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