2.500 Desalination and Water Purification Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

2.500: Bringing potable water to Phaeton and Paulette.

OUTLINE

- Our framework for evaluation the project
- Proposed solutions:
 - short term solutions
 - Bringing RO in third world countries
 - SEE
 - Solar still
- Conclusion and recommendations

FRAMEWORK

Defining the criteria to assess the project

Cost of system

Investment cost
Operating cost
Repairing cost

Easiness of operation

Level of expertise required for the maintenanceLevel of expertise required for the operation

Reliability of the water produce

- •Bacteria/ viruses removal.
- •Final level of salt.
- •Contamination after treatment
- •Sensitivity of the system to variation of feed water quality?

Our assesment: 10L/family/day (drinking)

Our units: Cost: \$/family/year

Existing solutions

Assessment of the existing situation

domestic use). Why not?: •There is no distinction in quality between drinking water and domestic use •It costs too much for some families •It may not be safe

45\$ / year /family

Short term suggestions

Education

•Importance of the education -> water problem awareness classes.

Aim 1: drinking water vs cooking water vs other uses

Aim 2: pollution water (bacteria vs salts vs taste and odor) and assessment of safe water water

Aim 3: Importance of drinking enough water to stay healthy

Bringing RO to Third World countries

Bringing RO to Third World countries

What?

Specifications?

How much?

Building a RO plant from bicycle parts.

1L/30min (not a continuous process)
Can run for 1 family drinking water (10L/day)

10\$ investment.5\$ for membrane replacement every year.

Why not?: •No prototype have been build •Not a good estimation of the membrane life time

?? 15\$ / year /family

Single effect evaporation

Single effect evaporation

What?

Specifications?

Using heat power source (wood, sugarcane charcoal from the "Ecole du charbon") to evaporate water from a pot into a copper tube.

•6L/ 1Kg of wood

How much?

•30\$ investment (pot+ copper tube).

• 96\$ of wood a year / family

Why not?: •Price of energy!!! (if no alternative combustible is possible) •pollution

10-100\$ / year /family

Solar still + Rain harvester

0.5 m

Section view of the still

Whole view of the solar still

Solar still + Rain harvester

What?

Specifications?

How much?

Building a solar still + rain harvester (one per family).

•4.3 m2 of active area per family
• 10L of water a day (for the solar still) •65\$ investment (black PVC film + wood frame + Transparent film). Running rime: 5years.

Why not?:
Contamination of the solar still by dust / rain
Rely on the sun → what about drinking water an a cloudy day

13\$ / year /family

CONCLUSION- RECOMMENDATIONS

INFORMATION/ EDUCATION of the population and need to separate drinking water to domestic use

Evaporation using sugarcane charcoal

RO self made system: a further assessment of the lifetime of membrane need to be done

Solar Still: our prefer solution, but variability of sunshine

