2.51 Intermediate Heat and Mass Transfer Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Table 2: Selected Conversion Factors					
Dimension	<u>SI</u>	=	multiplier	×	<u>Other Unit</u>
Density	kg/m ³	=	16.018	×	lbm/ft ³
	kg/m ³	=	10^{3}	×	g/cm ³
Diffusivity (α , ν , \mathcal{D})	m²/s	=	0.092903	×	ft²/s
	m^2/s	=	10^{-6}	×	centistokes
Energy	J	=	1055.04	×	Btu ^a
	J	=	4.1868	Х	cal ^b
Flow rate	m ³ /s	=	6.3090×10^{-5}	×	gal/min (gpm)
	m ³ /s	=	4.7195×10^{-4}	×	ft ³ /min (cfm)
Heat flux	W/m^2	=	3.154	X	$Btu/hr \cdot ft^2$
Heat transfer coefficient	W/m ² K	=	5.6786	×	Btu/hr \cdot ft ² °F
Length	m	=	0.0254	\times	inches
	m	=	0.3048	Х	feet
Power	W	=	0.022597	×	ft·lbf/min
	W	=	0.29307	×	Btu/hr
	W	=	745.700	Х	hp
Pressure	Ра	=	248.8	×	inH ₂ O (@60°F)
	Pa	=	6894.8	\times	psi
	Ра	=	101325	Х	atm
Specific heat capacity	J/kg·K	=	4186.9	×	Btu∕lbm∙°F
	J/kg∙K	=	4186.8	Х	cal/g·°C
Temperature	Κ	=	5/9	X	°R
	Κ	=	°C	+ 27	3.15
	Κ	=	(°F + 4	459.6	67)/1.8
Thermal conductivity	W/m·K	=	1.7307	×	Btu/hr∙ft°F
	W/m·K	=	418.68	Х	cal/s·cm°C
Viscosity (dynamic)	Pa∙s	=	10^{-3}	X	centipoise
	Pa∙s	=	1.4881	×	lbm/ft·s
	Pa·s	=	47.8803	Х	$lbf \cdot s/ft^2$

^{*a*} The British thermal unit, originally defined as the heat that raises 1 lbm of water 1°F, has several values that depend mainly on the initial temperature of the water warmed. The above is the International Table (*i.e.*, steam table) Btu. A "mean" Btu of 1055.87 J is also common. Related quantities are: 1 therm = 10^5 Btu; 1 quad = 10^{15} Btu ≈ 1 EJ; 1 ton of refrigeration = 12,000 Btu/hr absorbed.

^{*b*} The calorie represents the heat that raises 1 g of water 1°C. The above is the International Table calorie, or IT calorie. A "thermochemical" calorie of 4.184 J has also been common. The dietitian's "Calorie" is actually 1 kilocalorie.