
Chapter 6   OPTICAL PROPERTIES OF SOLIDS 
 

We will investigate how to calculate the dielectric constants of solids.  For this purpose, we 
will introduce classical models.  They have the advantage of easy to understand. 

 
6.1 Lorentz Model 
 

When bounded electrons or lattice interact with electromagnetic field, they generally 
oscillate around their equilibrium position.  In a quantum mechanical picture, these changes of 
energy mean that system transits between one energy state to another.  Classically, we could 
approximate the oscillation by a damped oscillator.  A damping force exists because various 
collision processes (electron-electron interaction, electron lattice interaction, etc.) extract energy.  
We can write done various force acting on the oscillator as 

 
Driving force = -eEx=-eEoe-iωt 
Spring force=-ksx 
Damping force=-βv=-βx' 
 

where Ex is the local electrical field, v the oscillator speed, and a negative sign has been added in 
front of the electron charge. 

The Newton's second law gives us 
 
 mx"=-βx'-ksx-eEx  (1.1) 
 

Since the electrical field is harmonic, Ex=Eoexp(-iωt), we can rewrite the above equation as 
 
 x"+γx'+ωo2x=-eEoe-iωt/m (1.2) 
 
where β=γm, and ks=ωo2m. ωo is the natural frequency, and γ is the damping factor.  To find the 
solution, we assume 
 
 x(t)=Ae-iωt (1.3) 
 
Substituting (1.3) into (1.2), and solve for A, we get 
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Recall that ex is the polarization of one oscillator.  The total polarization per unit volume is thus 
 

 P=Noex
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where 
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We will see the origin for this name later. 
The polarization is related to the electrical field through the electrical permittivity, 
 
 P=xεoE (1.8) 
 
So we have 
 

 x=
ω p

2

ωo
2 − ω2 − iγω

 (1.9) 

 
The relative dielectric constant (ε=εoεr) is 
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where the real and the imaginary parts are 
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The complex refractive index is calculated from εr as 
 
 N = εr  (1.13) 

 
or  
 n2-k2=εr' (1.14) 
 
 2nk=εr" (1.15) 
 
Classically, ωo is the resonance frequency of the simple harmonic oscillator. Quantum 
mechanically, the ωο is the energy difference between the final and the initial states.  If we have 
multiple oscillator, the Lorentz model can be written as 
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Drude Model 
 
For metals, there is no spring to connect free electrons to ions, so ωo=0.  From the Lorentz 
model, we get 
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The real and the imaginary parts are 
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and  
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These results are called Drude model.  Generally, ωp>γ.  If ω>ωp, we can see that εr"-->0, which 
means that κ-->0.  At high frequency, there is no absorption.  A metal becomes transparent!  The 
reason is that at this frequency, the electrons in the metal cannot react fast to the incident 
electrical field. 
 
 
Example: Self-Extinction of a Laser-Induced Plasma 
 
In laser material processing, the ablated and/or evaporated materials are often ionized.  An 
ionized gas is called plasma.  If the laser frequency is smaller than the plasma frequency, there 
will be high reflection of the laser beam and the laser energy cannot reach the target.  We always 
want to operate in the transparent region, 
 

 ω>
2

o
p

o

N e
m

ω
ε

=  (1.20) 

 
This leaves an upper limit for the total number of the ionized particles in the plume 
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Hagen-Rubens Equation 
 
We can further relate the metal dielectric constant to it electrical conductivity.  From our 
derivation or the Lorents model, we have the electron location as a function of the time.  We can 
calculate the electron speed as 
 

 
•

2

( ) i t
oeE i ev x
m i

ωω
ω γω

−−
= = −

− −
 (1.22) 

 
Let's consider the DC limit, ω-->0, then 



 

 v =
eE
mγ

 (1.23) 

 
The current flux density can be calculated from the electron velocity 
 
 J=Noev=σdcE (1.24) 
 
From Eq. (1.23) and (1.24), we can get calculate the damping factor from its dc conductivity 
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We can use the above relation to calculate γ and substitute into the Drude model to calculate n 
and κ.  A further approximation is obtained observing the Drude expression, when ω-->0, we 
have 
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From this, we can see that  
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The above relation is called Hagen-Rubens relation. 
 
Induced Field Effects 
 
In the derivations of the Lorentz model and the Drude model, we assume that the local electrical 
field acting on an atom equals the externally applied electrical field.  By doing so, we assumed 
that the neighboring atoms have no effect on the atom we are considering.  We can then calculate 
an the electrical dipole momentum of the atom caused by the external field.  But such a dipole 



will generate electrical field itself.  The generated electrical field is superimposed with the 
external field and applied to other atoms.  Similarly, the atom we are considering also experience 
the electrical field generated by other atoms in the surrounding.  So, strictly speaking, the 
electrical field acting on the atom, Elocal we are considering consists of two parts, one is the 
external electrical field Eex, the other is the field induced by the polarization of other atoms. 
 
 Elocal=Eex+Eind (1.29) 
 
It can be proven that the induced field is related to the polarization as 
 
 Eind=P/3εo (1.30) 
 
We also know that, 
 
 0( ) exε ε− =E P  (1.31)  

 
From the above three equations, we obtain, 
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Now let's revisit the Lorentz model, we have obtained that 
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We also have, from definition, 
 
 0ex exε ε= = +D E E P  (1.34) 

 
Thus, 
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or 
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where the summation is a generalization to several oscillators as we generalization the Lorentz 
model.  The above relation is called Clausius-Mossotti relation.  Its significance lies in that it 
relates the dielectric constant, which is a macroscopic quantity, to the microscopic quantity of 
the oscillators.  It can be further shown that the above equation can also be written as 
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This expression is identical to our derivation for the Lorentz model except that we changed ωo to 
Ωo, their relation is  
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2 −
ω pj

2

3
 (1.38) 

 
But this does not matter for most experiment since the value of ωo is often obtained by matching 
the experimental results with the models.  When ω<<ωo, we can neglect the ω terms in the 
denominator.  In this case, the right hand side of Eq. (1.37) is independent of frequency and 
linearly proportional to the square of the plasma frequency.  But since square of the plasma 
frequency is proportional to the number of oscillators, which is proportional to the density, we 
have 
 

 
εr −1
εr + 2

= ρ • cons tan t  (1.39) 

 
In this case, the frequency is far from the resonant frequency, the absorption is zero, we can 
rewrite is as 
 

 
n2 −1
n2 + 2

1
ρ
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Lorenz-Lorentz equation.  This equation gives us a relation between density and the refractive 
index.  It is particularly useful for some experiment which use the change of the refractive index 
caused by density change such as the shadow graph, the interferometer methods to measure 



temperature distribution.  For gases, we can even approximate the expression future because 
n~1.  We have 
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ρ

= constan t  (1.41) 

 
Debye Relaxation 
There is another mechanism for polarizing matter containing permanent, as opposed to induced, 
electric dipoles.  Such permant dipoles already exist in the materials such as the water molecules. 
Only these dipoles are randomly oriented.  When an electromagnetic field is applied, these 
dipoles will be realigned towards the direction of the electromagnetic field.  Unlike the Lorentz 
model, in which a spring will drag a polarized oscillator back to it equilibrium position, the 
restoring force is random thermal motion and it only tries to randomize the dipole orientation.  
To further understand the difference, imagine that we have an oscillation electromagnetic field 
that applied to a Lorents oscillator and a polarized molecule.  When the electromagnetic field is 
turned off, the oscillator in die down in an oscillating fashion, but for the permanent dipole, the 
change is no external force to force its dipole into a specific direction, it will try to randomize its 
direction.  Such a randomization is called relaxation.  We could express the relaxation process as 
 
 Pd(t)=Pd(0)e-t/τ (1.42) 
 
τ-relaxation time or time constant.  For fluids, this relaxation time can be calculated from a 
simple model, which consider the relaxation time of a sphere of radius d in a fluid of viscosity µ, 
 

 τ =
πµd3

2κ BT
 (1.43) 

 
Based on the described process, we can also relate the polarization with the external field and get 
an expression for the dielectric constant, which is 
 

 ε =1+ χv +
χD − χv
1 − iωτ

 (1.44) 

 
where χv is the electrical susceptibility at high frequency side (due to lattice vibration) and cD is 
the electric susceptibility at low frequency side. We can further write the expression in terms of 
n and k as 
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The Debye relaxation generally occurs at very long wavelength (microwave frequency) because 
an order of estimation of the relaxation time shows that τ is in the 10-10-10-12 s, which 
corresponds to microwave frequency.  At higher frequency, the molecules cannot follow the fast 
oscillation of the electromagnetic fields.  Now we should have a full picture of the dielectric 
constant of materials.  Please look at the extinction coefficient of water. 
 
Kramer-Kronig Relations 
 
Our discussion on the optical properties of solids will be complete with one more topic, this is 
the Kramer-Kronig relation.  This relation is a mathematical result that relative the real and the 
imaginary parts of any complex functions, including the dielectric constant, the refractive index, 
the complex reflection coefficient.  In fact, from our previous discussions, we can see that once 
dielectric function is determined, the real and the imaginary parts are automatically determined.  
A more fundamental result is that as long as the function is an analytical function, their real and 
imaginary parts are interrelated.  The relation between the real and the imaginary parts for 
dielectric constants are called Kramer-Kronig relations.  We can write such a relation for the n 
and κ as 
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where P signifies the Cauchy principal value of the integral because the denominator in the 
integrand experience a zero, 
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We can also write a similar relation for the reflection coefficient.  From our discussion on the 
Fresnel reflectivity, as know that  
 
 R =|r12|2  (1.50) 
 
Or we could write the reflection coefficient as 
 
 r12 = R(ω )eiϕ(ω)  (1.51) 

 
In practice, we can measure the reflectivity easily but not the phase.  Since r12 is an analytical 
function, its amplitude and phase also obeys the Kramer-Kronig relation.  We can use the 
relation to calculate the phase from measured reflectivity 
 

 ϕ(ω ) =
2ω
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P

ln R(ω ' )
ω ' 2 −ω 2 dω '

0

∞
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Once we calculate the phase, we know the reflection coefficient, from which we can inverse the 
Fresnel relation to get n and k.  The advantage of the Kramer-Kronig relation is that it does not 
depend on any mathematical model for the dielectric constants.  The disadvantage of the relation 
is that the integration is always over the whole spectrum.  In rarely cases, we can measure one 
property over the whole spectrum.  What is common in practice is that people measure 
reflectivity in certain frequency ranges, and for the reflectivity out side this frequency range, 
they use some model based on our previous discussions.  Then they use the Kramer-Kronig 
relations for the consider range to derive n and k in this range.  The idea is that outside the 
measurement region, the accuracy of the guessed function does not affect the accuracy of the 
measured range because the denominator becomes vary large and the contribution from their 
integration is small. 
 
  
 


