first law: during any cycle a system undergoes, the cyclic integral of the heat is proportional to the cyclic integral of the work
pg 83 van Wylen \& Sonntag Fundamentals of Classical Thermodynamics 3rd Edition SI Version

first law for cycle

$$
\begin{equation*}
\int 1 \mathrm{dQ}=\int 1 \mathrm{dW} \tag{5.2}
\end{equation*}
$$

The net energy interaction between a system and its environment is zero for a cycle executed by the system. pg 2 Cravalho and Smith

$$
\int 1 \mathrm{dQ}-\int 1 \mathrm{dW}=0 \quad \text { where integral are cyclic and dQ }=\delta \mathrm{Q} d \mathrm{~W}=\delta \mathrm{W}
$$

\square plot data

- A process
----. B process
$\int 1 \mathrm{dQ}=\int 1 \mathrm{dW}$ apply first law to cycle A B $\quad \int_{1}^{2} 1 \mathrm{dQ}_{\mathrm{A}}+\int_{2}^{1} 1 \mathrm{dQ}_{\mathrm{B}}=\int_{1}^{2} 1 \mathrm{dW}_{\mathrm{A}}+\int_{2}^{1} 1 \mathrm{dW}_{\mathrm{B}}$
apply first law to cycle A C $\quad \int_{1}^{2} 1 \mathrm{dQ}_{\mathrm{A}}+\int_{2}^{1} 1 \mathrm{dQ}_{\mathrm{C}}=\int_{1}^{2} 1 \mathrm{dW}_{\mathrm{A}}+\int_{2}^{1} 1 \mathrm{dW}_{\mathrm{C}}$
subtract A C from A B
rearrange ...

$$
\int_{2}^{1} 1 \mathrm{dQ}_{\mathrm{B}}-\int_{2}^{1} 1 \mathrm{dQ}_{\mathrm{C}}=\int_{2}^{1} 1 \mathrm{dW}_{\mathrm{B}}-\int_{2}^{1} 1 \mathrm{dW}_{\mathrm{C}}
$$

$$
\int_{2}^{1} 1 \mathrm{dQ}_{-} \mathrm{W}_{\mathrm{B}}=\int_{2}^{1} 1 \mathrm{dQ}_{\mathrm{W}} \quad \begin{aligned}
& \text { i.e. } \delta \mathrm{Q}-\delta \mathrm{W} \text { is a point function } \ldots \text { only dependent } \\
& \text { upon the end points }=>\text { define as } \ldots
\end{aligned}
$$

$\mathrm{dE}=\delta \mathrm{Q}-\delta \mathrm{W} \quad$ energy, point function

first law for system (Woud: Closed system) - change of state

N.B. Woud starts with rate equation and obtains this assuming steady state
rearrange and integrate ...

$$
\delta \mathrm{Q}=\mathrm{dE}+\delta \mathrm{W}
$$

$$
\mathrm{Q}_{1 _2}=\mathrm{E}_{2}-\mathrm{E}_{1}+\mathrm{W}_{1 _2}
$$

$\mathrm{E}_{1} \quad \mathrm{E}_{2}$ are intial and final values of
energy of system and...
$\mathrm{W}_{1 _2} \quad$ is work done BY the system
energy E consists of internal energy + kinetic energy + potential energy

$$
\mathrm{E}=\mathrm{U}+\mathrm{KE}+\mathrm{PE} \quad \mathrm{dE}=\mathrm{dU}+\mathrm{dKE}+\mathrm{dPE}
$$

and first law can be restated ...

$$
\begin{equation*}
\delta \mathrm{Q}=\mathrm{dE}+\delta \mathrm{W}=\mathrm{dU}+\mathrm{dKE}+\mathrm{dPE}+\delta \mathrm{W} \tag{5.4}
\end{equation*}
$$

$$
\begin{equation*}
\text { Closed System } \quad \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{U}=\mathrm{Q} _ \text {dot }-\mathrm{W}_{-} \text {dot } \quad \mathrm{dU}=\delta \mathrm{Q}-\delta \mathrm{W} \quad \mathrm{~m}_{-} \mathrm{dot}_{\mathrm{e}}=\mathrm{m}_{-} \operatorname{dot}_{\mathrm{i}}=0 \tag{W2.3}
\end{equation*}
$$

d and δ : VW\&S: page 62 Woud page 11
d = differential of point functions state variables
difference between d and $\delta \quad \delta=$ differential of path functions - amount depends on path/process: diminutive
see discussion of cyclic process below
cycle may be considered a closed system; initial state and final state are identical, For example (detailed discussion later)
\square set up limits and calculations

closed (cycle)

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{U}=0=\mathrm{Q} _ \text {dot }-\mathrm{W}_{-} \mathrm{dot} \tag{W2.6}
\end{equation*}
$$

Q_dot $=W _$dot $\mathrm{Q}_{\text {cycle }}=\mathrm{W}_{\text {cycle }}$
this is where we started above using different approach to first law

Sonntag example 5.3: vessel with volume $5 \mathrm{~m}^{3}$ contains $0.05 \mathrm{~m}^{3}$ of saturated liquid water and $4.95 \mathrm{~m}^{3}$ of saturated water vapor at 0.01 MPa . Heat is added until the vessel is filled with saturated vapor. Determine Q.

State 1: $\quad V:=5 m$

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{vap}}:=4.95 \mathrm{~m}^{3} & \mathrm{MPa}:=10^{6} \mathrm{~Pa} \quad \mathrm{~kJ}:=10^{3} \cdot \mathrm{~J} \\
\mathrm{~V}_{\mathrm{liq}}:=0.05 \mathrm{~m}^{3} & \mathrm{p}:=0.1 \mathrm{MPa}
\end{array}
$$

constant volume and
mass => constant v

$$
\mathrm{v}_{\mathrm{f}}:=0.001043 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \quad \mathrm{u}_{\mathrm{f}}:=417.36 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \text { page } 616
$$

steam tables at $p=$ 0.1 MPa

$$
\mathrm{v}_{\mathrm{g}}:=1.694 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \quad \mathrm{u}_{\mathrm{g}}:=2506.1 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{u}_{\mathrm{fg}}:=2088.7 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

State 2:

$$
\mathrm{V}_{2}=\mathrm{V} \quad v=\mathrm{v}_{\mathrm{g}} \quad \mathrm{u}=\mathrm{u}_{\mathrm{g}}
$$

first law:

$$
\mathrm{Q}_{1 _2}=\mathrm{E}_{2}-\mathrm{E}_{1}+\mathrm{W}_{1 _2}
$$

$W_{1 _2}=0$
$\mathrm{Q}_{1 _2}=\mathrm{U}_{2}-\mathrm{U}_{1}$
$\Delta \mathrm{V}=0$
$\Delta \mathrm{z}=0$
$\mathrm{E}=\mathrm{U}$
have volume, determine mass of each $\quad V_{n}=m_{n} \cdot v_{n} \quad \operatorname{mass}_{f}=\frac{V_{f}}{v_{f}}$ intensive property $=$ not dependent on
$\mathrm{U}_{1}:=$ mass $_{1 _ \text {liq }} \cdot \mathrm{u}_{\mathrm{f}}+$ mass $_{1 _ \text {vap }} \cdot \mathrm{u}_{\mathrm{g}}$
$\mathrm{U}_{1}=2.7331 \times 10^{4} \mathrm{~kJ}$
mass (x, v, u, ρ)
extensive does (U, V, mass)
or ... using average specific properties
$\mathrm{u}_{1}:=\mathrm{u}_{\mathrm{f}}+\mathrm{x}_{1} \cdot \mathrm{u}_{\mathrm{fg}} \quad \mathrm{u}_{1}=537.3611 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{U}_{11}:=\mathrm{u}_{1} \cdot\left(\right.$ mass $_{1_{-} \text {vap }}+$ mass $\left._{1 _ \text {liq }}\right) \quad \mathrm{U}_{11}=2.7331 \times 10^{4} \mathrm{~kJ}$
which can be shown by ...

$$
\begin{aligned}
& \mathrm{U}_{1}=\text { mass }_{1 _ \text {liq }} \cdot \mathrm{u}_{\mathrm{f}}+\text { mass }_{1_{-} \text {vap }} \cdot \mathrm{u}_{\mathrm{g}} \\
& u_{g}=u_{f}+u_{f g} \quad u_{f g}=2.0887 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{u}_{\mathrm{g}}-\mathrm{u}_{\mathrm{f}}=2.0887 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { mass }_{1 _ \text {_liq }}:=\frac{\mathrm{V}_{\text {liq }}}{\mathrm{v}_{\mathrm{f}}} \quad \text { mass }_{1 _ \text {_liq }}=47.9386 \mathrm{~kg} \quad \text { mass }_{1_{-} \text {vap }}:=\frac{\mathrm{V}_{\text {vap }}}{\mathrm{v}_{\mathrm{g}}} \quad \text { mass }_{1_{-}} \text {vap }=2.9221 \mathrm{~kg} \\
& \mathrm{x}=\text { quality }(\text { of_steam }) \quad \mathrm{x}_{1}:=\frac{\text { mass }_{1 _ \text {vap }}}{\text { mass }_{1_{1} \text { vap }}+\text { mass }_{1 _ \text {liq }}} \quad \mathrm{x}_{1}=0.0575 \quad \mathrm{x} \%_{1}:=\mathrm{x}_{1} \cdot 100 \quad \mathrm{x} \%_{1}=5.7453
\end{aligned}
$$

state 2 ：need 2 properties，e．g．quality $=100 \%$ ，can
calculate v（specific volume）．T and p will be rising as heat is added．
mass＿total $:=$ mass $_{1 _ \text {＿liq }}+$ mass $_{1 _ \text {vap }}$
$\mathrm{v}_{2}:=\frac{\mathrm{V}}{\text { mass＿total }} \quad \mathrm{v}_{2}=0.0983 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}$
and ．．．is saturated vapor so we need to look up （interpolate）steam tables for $\mathrm{v}_{\mathrm{g}}=\mathrm{v}_{2}$
my＿interp $(x 2, x 1, y 2, y 1, v x):=y 1+\frac{v x-x 1}{x 2-x 1} \cdot(y 2-y 1) \quad \begin{aligned} & \text { an interpolation statement } \\ & v \text { is value between } x_{1} \text { and } x\end{aligned}$ v is value between x_{1} and x_{2} result is y at v
could use mod function linterp（ $\mathrm{vx}, \mathrm{vy}, \mathrm{x}$ ）where：
vx is a vector of real data values in ascending order．
$v y$ is a vector of real data values having the same number of elements as $v x$ ．
x is the value of the independent variable at which to interpolate a result．For best results，this should be in the range encompassed by the values of $v x$ ．
using Table A．1．1 T
V_{g}
$u_{g} \quad P_{g}$
values at $1 \quad \mathrm{~T}_{1}:=210$

$$
\mathrm{v}_{1 \mathrm{~g}}:=0.10441 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
$$

$\mathrm{u}_{1 \mathrm{~g}}:=2599.5 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{p}_{1 \mathrm{~g}}:=1.9062 \mathrm{MPa}$
values at $2 \quad \mathrm{~T}_{2}:=215$
$\mathrm{v}_{2 \mathrm{~g}}:=0.09479 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}$ $\mathrm{u}_{2 \mathrm{~g}}:=2601.1 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{p}_{2 \mathrm{~g}}:=2.104 \mathrm{MPa}$
interpolated values at

$$
\mathrm{vx}:=\mathrm{v}_{2}
$$

$$
\begin{array}{ll}
\mathrm{T}_{2 \mathrm{a}}:=\text { my_interp }\left(\mathrm{v}_{2 \mathrm{~g}}, \mathrm{v}_{1 \mathrm{~g}}, \mathrm{~T}_{2}, \mathrm{~T}_{1}, \mathrm{vx}\right) & \mathrm{T}_{2}=213.1717 \\
\mathrm{p}_{2}:=\text { my_interp }\left(\mathrm{v}_{2 \mathrm{~g}}, \mathrm{v}_{1 \mathrm{~g}}, \mathrm{p}_{2 \mathrm{~g}}, \mathrm{p}_{1 \mathrm{~g}}, \mathrm{vx}\right) & \mathrm{p}_{2}=2.0317 \mathrm{MPa} \\
\mathrm{u}_{2}:=\text { my_interp }\left(\mathrm{v}_{2 \mathrm{~g}}, \mathrm{v}_{1 \mathrm{~g}}, \mathrm{u}_{2 \mathrm{~g}}, \mathrm{u}_{1 \mathrm{~g}}, \mathrm{vx}\right) & \mathrm{u}_{2}=2.6005 \times 10 \frac{3 \mathrm{~kJ}}{\mathrm{~kg}}
\end{array}
$$

total internal energy at state 2 ：

$$
\mathrm{U}_{2}:=\text { mass_total } \cdot \mathrm{u}_{2}
$$

$$
\mathrm{U}_{2}=1.3226 \times 10^{5} \mathrm{~kJ}
$$

heat added ．．．

$$
\mathrm{Q}_{1 _2}:=\mathrm{U}_{2}-\mathrm{U}_{1} \quad \mathrm{Q}_{1 _2}=104933 \mathrm{~kJ}
$$

same result can be obtained using Table A．1．2 Pressure Tables

$$
\text { my interp }(x 2, x 1, y 2, y 1, v x):=y 1+\frac{v x-x 1}{x 2-x 1} \cdot(y 2-y 1)
$$

	p	v_{g}	y_{g}	T
values at 1	品为i $=2.0 \mathrm{MPa}$	$\mathrm{ving}:=0.09963 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}$	$\underset{\mathrm{m} ⿻ \mathrm{ug}}{\mathrm{u}} \mathrm{i}:=2600.3 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$	$\mathrm{T}_{14}:=212.42$
values at 2	P 2 2gi $i=2.25 \mathrm{MPa}$	$\mathrm{V}_{2} 2 \mathrm{~g}:=0.08875 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}$	$\mathrm{w}_{\mathrm{w} 2 \mathrm{~g}} \mathrm{v}^{\text {a }}=2602.0 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$	$\mathrm{T}_{2} \mathrm{~s}^{\prime}:=218.45$

interpolated values at

$$
\text { vx: }=v_{2}
$$

$$
\begin{aligned}
& \mathrm{T}_{2 \mathrm{a}}:=\text { my_interp }\left(\mathrm{v}_{2 \mathrm{~g}}, \mathrm{v}_{1 \mathrm{~g}}, \mathrm{~T}_{2}, \mathrm{~T}_{1}, \mathrm{vx}\right) \quad \mathrm{T}_{2}=213.1529 \\
& \text { phan }_{2}:=\text { my_interp }\left(\mathrm{v}_{2 \mathrm{~g}}, \mathrm{v}_{1 \mathrm{~g}}, \mathrm{P}_{2 \mathrm{~g}}, \mathrm{p}_{1 \mathrm{~g}}, \mathrm{vx}\right) \quad \mathrm{P}_{2}=2.0304 \mathrm{MPa} \\
& {\underset{M}{M} 2 u^{2}}:=\text { my_interp }\left(v_{2 g}, v_{1 g}, u_{2 g}, u_{1 g}, v x\right) \quad u_{2}=2.6005 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{aligned}
$$

total internal energy at state $2: \quad \mathrm{U}_{2} \mathrm{~N}_{\mathrm{N}}=$ mass_total $\cdot \mathrm{u}_{2} \quad \mathrm{U}_{2}=1.3226 \times 10^{5} \mathrm{~kJ}$

$$
\text { heat added } \ldots \quad \quad \mathrm{Q}_{1 \underline{n} 2 \mathrm{~s}}:=\mathrm{U}_{2}-\mathrm{U}_{1} \quad \mathrm{Q}_{1 _2}=104933 \mathrm{~kJ}
$$

- example 5.3

first law as a rate equation

from above ...

$$
\mathrm{Q}_{1 _2}=\mathrm{E}_{2}-\mathrm{E}_{1}+\mathrm{W}_{1 _2}=\mathrm{U}_{2}-\mathrm{U}_{1}+\mathrm{KE}_{2}-\mathrm{KE}_{1}+\mathrm{PE}_{2}-\mathrm{PE}_{1}+\mathrm{W}_{1 _2}
$$

$\delta \mathrm{Q}=\delta \mathrm{U}+\delta \mathrm{KE}+\delta \mathrm{PE}+\delta \mathrm{W} \quad$ in small time interval $\delta \mathrm{t}$
$\frac{\delta \mathrm{Q}}{\delta \mathrm{t}}=\frac{\delta \mathrm{U}}{\delta \mathrm{t}}+\frac{\delta \mathrm{KE}}{\delta \mathrm{t}}+\frac{\delta \mathrm{PE}}{\delta \mathrm{t}}+\frac{\delta \mathrm{W}}{\delta \mathrm{t}}$
divide by $\delta \mathrm{t}$
first law as a rate equation $\frac{d}{d t} Q=\frac{d}{d t} U+\frac{d}{d t} K E+\frac{d}{d t} P E+\frac{d}{d t} W=\frac{d}{d t} E+\frac{d}{d t} W$
(5.31 and 5.32)
first law as a rate equation - for a control volume (Woud: system boundary)

$$
\begin{align*}
& \mathrm{Q}_{1 _2}=\mathrm{E}_{2}-\mathrm{E}_{1}+\mathrm{W}_{1 _2} \quad \Rightarrow \quad \frac{\delta \mathrm{Q}}{\delta \mathrm{t}}=\frac{\mathrm{E}_{2}-\mathrm{E}_{1}}{\delta \mathrm{t}}+\delta \mathrm{W} \tag{5.38}\\
& \mathrm{E}_{\mathrm{t}} \quad=\text { energy in control volume at time } \mathrm{t} \\
& \mathrm{E}_{\mathrm{t} _\delta \mathrm{t}} \quad=\text { energy in control volume at time } \mathrm{t}+\mathrm{dt} \\
& \mathrm{E}_{1}:=\mathrm{E}_{\mathrm{t}}+\mathrm{e}_{\mathrm{i}} \cdot \delta \mathrm{~m}_{\mathrm{i}} \quad=\text { the energy of the system at time } \mathrm{t} \\
& E_{2}:=E_{t} _\delta t+e_{e} \cdot \delta m_{e} \quad=\text { the energy of the system at time } t+d t \\
& \text { system consists of control } \\
& \text { volume and differential entities } \\
& \delta \mathrm{m}_{\mathrm{i}} \text { each with } \mathrm{e}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}, \mathrm{~T}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}} \\
& \text { where } \mathrm{i}=\text { input } \\
& \text { and differential entities } \delta \text { me } \\
& \text { each with } e_{e}, v_{e}, T_{e}, p_{e} \text { where } \\
& \text { e = output } \\
& \mathrm{E}_{2}-\mathrm{E}_{1} \rightarrow \mathrm{E}_{\mathrm{t} _\delta \mathrm{t}}+\mathrm{e}_{\mathrm{e}} \cdot \delta \mathrm{~m}_{\mathrm{e}}-\mathrm{E}_{\mathrm{t}}-\mathrm{e}_{\mathrm{i}} \cdot \delta \mathrm{~m}_{\mathrm{i}} \quad \quad \mathrm{E}_{2}-\mathrm{E}_{1}=\mathrm{E}_{\mathrm{t} _\mathrm{t}}-\mathrm{E}_{\mathrm{t}}+\mathrm{e}_{\mathrm{e}} \cdot \delta \mathrm{~m}_{\mathrm{e}}-\mathrm{e}_{\mathrm{i}} \cdot \delta \mathrm{~m}_{\mathrm{i}} \tag{5.39}\\
& e_{e} \cdot \delta m_{e}-e_{i} \cdot \delta m_{i} \quad \text { represents flow of energy across boundary during } \delta t \text { as a result of } \\
& \delta \mathrm{m}_{\mathrm{i}} \text { and } \delta \mathrm{m}_{\mathrm{e}} \text { crossing the control surface }
\end{align*}
$$

now consider work associated with masses δm_{i} and δm_{e} work done ON mass $\delta \mathrm{m}_{\mathrm{i}}$ is ...
$\mathrm{p}_{\mathrm{i}} \cdot \mathrm{v}_{\mathrm{i}} \cdot \delta \mathrm{m}_{\mathrm{i}}$
ON as work must be done to make it enter system
work done BY mass δm_{e} is $\ldots \quad \quad \mathrm{P}_{\mathrm{e}} \cdot \mathrm{v}_{\mathrm{e}} \cdot \delta \mathrm{m}_{\mathrm{e}} \quad$ BY as leaving represents work done
work done BY system in δt is then ..

$$
\begin{equation*}
\delta \mathrm{W}+\mathrm{p}_{\mathrm{e}} \cdot \mathrm{v}_{\mathrm{e}} \cdot \delta \mathrm{~m}_{\mathrm{e}}-\mathrm{p}_{\mathrm{i}} \cdot \mathrm{v}_{\mathrm{i}} \cdot \delta \mathrm{~m}_{\mathrm{i}} \tag{5.41}
\end{equation*}
$$

divide by δt and substitute into first law ... (5.38) and combining and rearranging $\frac{\delta \mathrm{Q}}{\delta \mathrm{t}}=\frac{\mathrm{E}_{2}-\mathrm{E}_{1}}{\delta \mathrm{t}}+\delta \mathrm{W}$

$$
\begin{align*}
& \frac{\delta \mathrm{Q}}{\delta t}+\frac{\delta \mathrm{m}_{\mathrm{i}}}{\delta t} \cdot\left(\mathrm{e}_{\mathrm{i}}+\mathrm{p}_{\mathrm{i}} \cdot \mathrm{v}_{\mathrm{i}}\right)=\frac{\mathrm{E}_{\mathrm{t}-} \delta \mathrm{t}-\mathrm{E}_{\mathrm{t}}}{\delta \mathrm{t}}+\frac{\delta \mathrm{m}_{\mathrm{e}}}{\delta \mathrm{t}} \cdot\left(\mathrm{e}_{\mathrm{e}}+\mathrm{p}_{\mathrm{e}} \cdot \mathrm{v}_{\mathrm{e}}\right)+\frac{\delta \mathrm{W}_{\mathrm{C}-\mathrm{v}}}{\delta t} \tag{5.38}\\
& \mathrm{e}+\mathrm{p} \cdot \mathrm{v}=\mathrm{u}+\mathrm{pv}+\frac{\mathrm{v}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\mathrm{h}+\frac{\mathrm{v}^{2}}{2}+\mathrm{g} \cdot \mathrm{z} \tag{5.43}
\end{align*}
$$

$$
\begin{array}{ll}
\mathrm{H}=\mathrm{U}+\mathrm{p} \cdot \mathrm{~V} & \text { enthalpy defined }- \text { is } \\
\mathrm{h}=\mathrm{u}+\mathrm{p} \cdot \mathrm{v} & \text { a property (5.12) }
\end{array}
$$

therefore ...

$$
\begin{equation*}
\frac{\delta Q}{\delta t}+\frac{\delta m_{i}}{\delta t} \cdot\left(h_{i}+\frac{v_{i}^{2}}{2}+g \cdot z_{i}\right)=\frac{E_{t} \delta t t-E_{t}}{\delta t}+\frac{\delta m_{e}}{\delta t} \cdot\left(h_{e}+\frac{v_{e}^{2}}{2}+g \cdot z_{e}\right)+\frac{\delta W_{c_{c}-v}}{\delta t} \tag{5.44}
\end{equation*}
$$

- example 5.4

Sonntag example 5.4 a cylinder fitted with a piston has volume 0.1 m 3 and contains 0.5 kg steam at 0.4 MPa . Heat is transferred until the temperature is 300 deg_C while pressure is constant

What are the heat and work for this process?

$$
\begin{aligned}
& \mathrm{V}_{1}:=0.1 \mathrm{~m}^{3} \quad \mathrm{~m}_{\mathrm{tot}}:=0.5 \mathrm{~kg} \quad \text { I think by definition, steam = water }+ \text { vapor at quality }=\mathrm{x} \\
& \mathrm{~T}_{\text {man }}:=300 \text { deg_C } \quad \mathrm{P}:=0.4 \mathrm{MPa} \\
& \Rightarrow \quad \mathrm{v}_{1}:=\frac{\mathrm{v}_{1}}{\mathrm{~m}_{\text {tot }}} \quad \mathrm{v}_{1}=0.2 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
& \text { quality }=\frac{\text { mass_of_vapor }}{\text { total_mass }}=x \quad \text { an intensive property } \quad 1-x=\frac{\text { mass_of_liquid }}{\text { total_mass }} \\
& v_{\mathrm{m}}^{\mathrm{f}}:=0.001084 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \quad \underset{\mathrm{mg} \mathrm{i}}{\mathrm{v}}:=0.4625 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \quad \mathrm{v}_{\mathrm{fg}}:=\mathrm{v}_{\mathrm{g}}-\mathrm{v}_{\mathrm{f}} \quad \mathrm{v}_{\mathrm{fg}}=0.4614 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
& \mathrm{v}_{1}=\mathrm{v}_{\mathrm{f}}+\mathrm{x} \cdot \mathrm{v}_{\mathrm{fg}} \quad \mathrm{x}:=\frac{\mathrm{v}_{1}-\mathrm{v}_{\mathrm{f}}}{\mathrm{v}_{\mathrm{fg}}} \quad \mathrm{x}=0.4311 \\
& \text { constant pressure } \\
& \mathrm{Q}_{1 _2}=\mathrm{E}_{2}-\mathrm{E}_{1}+\mathrm{W}_{1 _2} \\
& \mathrm{w}_{1-2}=\mathrm{p} \cdot\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)=\mathrm{p} \cdot \mathrm{~m}_{\mathrm{tot}} \cdot\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right) \\
& \mathrm{E}_{2}-\mathrm{E}_{1}=\mathrm{U}_{2}-\mathrm{U}_{1} \quad \text { as } \Delta \mathrm{V}^{\wedge} 2 \text { and } \Delta \mathrm{z}=0
\end{aligned}
$$

$$
\begin{aligned}
& E_{2}-E_{1}=U_{2}-U_{1}=m_{\text {tot }}\left(u_{2}-u_{1}\right) \\
& Q_{1 _2}=E_{2}-E_{1}+W_{1 _2}=m_{\text {tot }} \cdot\left(u_{2}-u_{1}\right)+p \cdot m_{\text {tot }} \cdot\left(v_{2}-v_{1}\right)=m_{\text {tot }}\left[u_{2}+p \cdot v_{2}-\left(u_{1}+p \cdot v_{1}\right)\right] \\
& \mathrm{h}_{\mathrm{f}}:=604.74 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~h}_{\mathrm{fg}}:=2133.8 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~h}_{1}:=\mathrm{h}_{\mathrm{f}}+\mathrm{x} \cdot \mathrm{~h}_{\mathrm{fg}} \quad \mathrm{~h}_{1}=1.5246 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~h}_{2}:=3066.8 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& \text { 연Nav: }=\mathrm{m}_{\text {tot }} \cdot\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right) \quad \mathrm{Q}_{1 _2}=771.0904 \mathrm{~kJ} \\
& \text { Table A.1.2 Saturated } \\
& \text { Steam Pressure Table } \\
& \mathrm{v}_{2 \mathrm{k}}:=0.6548 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \quad \text { Table A.1.2 Saturated Steam Pressure Table } \quad \mathrm{v}_{1}=0.2 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
& \mathrm{~W}_{1 _2}:=\mathrm{p} \cdot \mathrm{~m}_{\text {tot }} \cdot\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right) \quad \mathrm{w}_{1 _2}=90.96 \mathrm{~kJ} \\
& \mathrm{Q}_{1 _2}=\mathrm{E}_{2}-\mathrm{E}_{1}+\mathrm{W}_{1 _2}=\mathrm{U}_{2}-\mathrm{U}_{1}+\mathrm{W}_{1 _2} \\
& \mathrm{U}_{2}-\mathrm{U}_{1}=\mathrm{Q}_{1 _2}-\mathrm{W}_{1 _2}=\mathrm{Q}_{1 _2}-\mathrm{p} \cdot \mathrm{~m}_{\text {tot }} \cdot\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right) \\
& \Delta \mathrm{U}:=\mathrm{Q}_{1 _2}-\mathrm{p} \cdot \mathrm{~m}_{\text {tot }} \cdot\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right) \quad \Delta \mathrm{U}=680.1304 \mathrm{~kJ}
\end{aligned}
$$

- example 5.4

first law as a rate equation - for a control volume

$$
\begin{equation*}
\frac{d}{d t} Q_{C_{-} v}+\sum_{n}\left[m_{-} \operatorname{dot}_{i} \cdot\left(h_{i}+\frac{V_{i}^{2}}{2}+g \cdot z_{i}\right)\right]=\frac{d}{d t} E_{c_{-} v}+\sum_{n}\left[m_{-} \operatorname{dot}_{e} \cdot\left(h_{e}+\frac{V_{e}^{2}}{2}+g \cdot z_{e}\right)\right]+\frac{d}{d t} W_{c_{-} v} \tag{5.45}
\end{equation*}
$$

this is where Woud starts

Q_dot = heat_flow	$\mathrm{z}=$ elevation
W_dot = work_flow	$\mathrm{i}=$ inlet
m_dot = mass_flow	$\mathrm{e}=$ exit
$\mathrm{v}=$ velocity	$\mathrm{m}=$ mass_system
$\mathrm{h}=$ specific_enthalpy	$\mathrm{U}=$ internal_energy_system

First law: change of energy within the system equals the heat flow into the system, minus the work flow delivered by the system, plus the difference in the enthalpy, H, kinetic energy $E_{\text {kin }}$ and potential energy $E_{\text {pot }}$ of the entering and exiting mass flows.
assuming energy
$\mathrm{E}=\mathrm{U}+\mathrm{E}_{\mathrm{kin}}+\mathrm{E}_{\text {pot }}$
and ...
$\mathrm{E}_{\text {kin }}=\mathrm{E}_{\text {pot }}=0$
$\mathrm{E}=\mathrm{U}$
$\frac{d}{d t} U=Q _d o t-W _d o t+m_{-}$dot $_{\mathrm{i}} \cdot\left(\mathrm{h}_{\mathrm{i}}+\frac{\mathrm{V}_{\mathrm{i}}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{\mathrm{i}}\right)-\mathrm{m}_{-}$dot $_{\mathrm{e}} \cdot\left(\mathrm{h}_{\mathrm{e}}+\frac{\mathrm{V}_{\mathrm{e}}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{\mathrm{e}}\right) \quad \mathrm{N} . \mathrm{B} \cdot$ dot $=>$ rate not $\mathrm{d}(\mathrm{r}) / \mathrm{dt}$
enthalpy $=\mathrm{H}=\mathrm{U}+\mathrm{p} \cdot \mathrm{V} \quad \mathrm{W}(2.1)$
steady state, steady flow process ... Woud: open systems steady state (stationary)
assumptions ...

1. control volume does not move relative to the coordinate frame
2. the mass in the control volume does not vary with time
3. the mass flux and the state of mass at each discrete area of flow on the control surface do not vary with time and .. the rates at which heat and work cross the control surface remain constant.

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~m}_{\mathrm{c}_{-} \mathrm{v}}=0 \quad \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{E}_{\mathrm{c}_{-} \mathrm{v}}=0
$$

$$
\begin{equation*}
\sum_{\mathrm{n}} \mathrm{~m}_{-} \mathrm{dot}_{\mathrm{i}}=\sum_{\mathrm{n}} \mathrm{~m}_{-} \mathrm{dot}_{\mathrm{e}_{\mathrm{n}}} \tag{5.46}
\end{equation*}
$$

$\frac{d}{d t} Q_{C_{-} v}+\sum_{n}\left[m_{-} \operatorname{dot}_{i_{n}} \cdot\left(h_{i}+\frac{v_{i}^{2}}{2}+g \cdot z_{i}\right)\right]=\sum_{n}\left[m_{-} \operatorname{dot}_{e_{n}} \cdot\left(h_{e}+\frac{V_{e}^{2}}{2}+g \cdot z_{e}\right)\right]+\frac{d}{d t} W_{C_{-} v}$
W_{-}dot $=$Q_dot $+\mathrm{m}_{-}$dot $\cdot\left[h_{i}-h_{e}+\frac{\mathrm{v}_{\mathrm{i}}{ }^{2}-\mathrm{V}_{\mathrm{e}}{ }^{2}}{2}+\mathrm{g} \cdot\left(\mathrm{z}_{\mathrm{i}}-\mathrm{z}_{\mathrm{e}}\right)\right]$
(W 2.8) see text for examples of application to steam turbine, boiler or heat exchanger, nozzle and throttle

$$
\mathrm{q}=\frac{\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{Q}_{\mathrm{C}-\mathrm{v}}}{\mathrm{~m} _\mathrm{dot}} \quad \mathrm{w}=\frac{\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~W}_{\mathrm{c}_{-} \mathrm{v}}}{\mathrm{~m} _\mathrm{dot}}
$$

are heat transfer and work per unit mass flow (5.51)
steady state steady flow ... - single flow stream

$$
\begin{equation*}
q+h_{i}+\frac{v_{i}^{2}}{2}+g \cdot z_{i}=h_{e}+\frac{v_{e}^{2}}{2}+g \cdot z_{e}+w \tag{5.50}
\end{equation*}
$$

uniform state, uniform flow process USUF

1. control volume remains constant relative to the coordinate frame
2. state of mass within the control volume may change with time, but at any instant of time is uniform throughout the entire control volume - I define this as $f(t)$ but not of space
3. the state of mass crossing each of the areas of flow on the control surface is constant with time although the mass flow rates may be changing
at time t, continuity equation ...

$$
\frac{d}{d t} m_{c_{-} v}+\sum_{n} m_{-d o t}^{e_{n}}-\sum_{n} m_{-} \operatorname{dot}_{i_{n}}=0
$$

integrating over time gives change in mass of the control volume

$$
\int_{0}^{\mathrm{t}} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{~m}_{\mathrm{c} _} \mathrm{v} \mathrm{dt}=\mathrm{m}_{2 _\mathrm{c} _\mathrm{v}}-\mathrm{m}_{1 _\mathrm{c} _\mathrm{v}}
$$

mass entering and leaving

$$
\int_{0}^{t} \sum_{n} m_{-} \operatorname{dot}_{i_{n}} d t=\sum_{n} m_{i_{n}}
$$

$$
\int_{0}^{\mathrm{t}} \sum_{\mathrm{n}} \mathrm{~m}_{-} \mathrm{dot}_{\mathrm{e}_{\mathrm{n}}} \mathrm{dt}=\sum_{\mathrm{n}} \mathrm{~m}_{\mathrm{e}_{\mathrm{n}}}
$$

$$
\text { continuity for USUF process ... } \quad m_{2 _c _v}-m_{1 _c _v}+\sum_{n} m_{e_{n}}-\sum_{n} m_{i_{n}}=0
$$

apply first law at time t (5.45)

$$
\begin{equation*}
\frac{d}{d t} Q_{c_{-}-v}+\sum_{n}\left[m_{-} \operatorname{dot}_{i} \cdot\left(h_{i}+\frac{V_{i}^{2}}{2}+g \cdot z_{i}\right)\right]=\frac{d}{d t} E_{c_{-} v}+\sum_{n}\left[m_{-} \operatorname{dot}_{e} \cdot\left(h_{e}+\frac{V_{e}^{2}}{2}+g \cdot z_{e}\right)\right]+\frac{d}{d t} W_{c _v} \tag{5.45}
\end{equation*}
$$

since at time t c.v. is uniform ...

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{Q}_{\mathrm{C}_{-} \mathrm{v}}+\sum_{\mathrm{n}}\left[\mathrm{~m}_{-} \operatorname{dot}_{\mathrm{i}} \cdot\left(\mathrm{~h}_{\mathrm{i}}+\frac{\mathrm{V}_{\mathrm{i}}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{\mathrm{i}}\right)\right]= & \frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{~m} \cdot\left(\mathrm{u}_{\mathrm{C}_{-} \mathrm{v}}+\frac{\mathrm{V}_{\mathrm{C}_{-} \mathrm{v}}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{\mathrm{c}_{-} \mathrm{v}}\right)\right] \ldots \\
& +\sum_{\mathrm{n}}\left[\mathrm{~m}_{-} \mathrm{dot}_{\mathrm{e}} \cdot\left(\mathrm{~h}_{\mathrm{e}}+\frac{\mathrm{V}_{\mathrm{e}}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{\mathrm{e}}\right)\right]+\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~W}_{\mathrm{C}_{-} \mathrm{v}}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{t} \frac{d}{d t} Q_{C_{-} v} d t=Q_{C_{-} v} \quad \int_{0}^{t}\left[m_{n}\left[\operatorname{mot}_{i} \cdot\left(h_{i}+\frac{V_{i}^{2}}{2}+g \cdot z_{i}\right)\right] d t=\sum_{n}\left[m_{i} \cdot\left(h_{i}+\frac{V_{i}^{2}}{2}+g \cdot z_{i}\right)\right]\right. \\
& \int_{0}^{\mathrm{t}} \frac{\mathrm{~d}}{\mathrm{dt}}\left[\mathrm{~m} \cdot\left(\mathrm{u}_{\mathrm{c}_{-} \mathrm{v}}+\frac{\mathrm{V}_{\mathrm{c}_{-}{ }^{2}}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{\mathrm{c}_{-} \mathrm{v}}\right)\right] \mathrm{dt}=\mathrm{m}_{2} \cdot\left(\mathrm{u}_{2}+\frac{\mathrm{V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)-\mathrm{m}_{1} \cdot\left(\mathrm{u}_{1}+\frac{\mathrm{V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right) \\
& \int_{0}^{t}\left[m_{n}\left[d_{n} \cdot\left(h_{e}+\frac{V_{e}^{2}}{2}+g \cdot z_{e}\right)\right] d t=\sum_{n}\left[m_{e} \cdot\left(h_{e}+\frac{V_{e}^{2}}{2}+g \cdot z_{e}\right)\right] \quad \int_{0}^{t} \frac{d}{d t} W_{c_{-}-v} d t=W_{c_{-} v}\right.
\end{aligned}
$$

uniform state, uniform flow process USUF

$$
\begin{align*}
Q_{C_{-} v}+\sum_{n}\left[m_{i_{n}} \cdot\left(h_{i}+\frac{V_{i}^{2}}{2}+g \cdot z_{i}\right)\right]= & \sum_{n}\left[m_{e_{n}} \cdot\left(h_{e}+\frac{v_{e}^{2}}{2}+g \cdot z_{e}\right)\right] \cdots \tag{5.54}\\
& +m_{2} \cdot\left(u_{2}+\frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)-m_{1} \cdot\left(u_{1}+\frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)+W_{c_{-} v}
\end{align*}
$$

