Propeller Testing

Screw propeller replaced paddle wheel ~1845 in Great Britain (vessel) - Brunel In test;

V _A
n (rev/sec), N (rev/min)
Q
Т

i.e. we build a propeller, rotate it a a given speed in a given flow and measure thrust and torque (at this point - conceptually - not practical at full scale)

are considering propeller in general, no ship present, => open water velocities relative to blade:

test at given n, vary V_A , measure thrust (T), torque (Q) and calculate efficiency (η_0)

typical performance curve at given rotaion speed, note zero efficiency at $V_A = 0$ and T = 0

Obviously, testing at full scale impractical, hence use model scale and apply to geopmetrically similar propeller. Expect performance to depend on:

VA velocity of advance

D diameter of propeller

n rotational speed

 ρ fluid density

 μ dynamic viscosity (v = μ/ρ = kinematic viscosity

p - p_v pressure of fluid (upstream static pressure) compared to vapor pressure

First non-dimensionalize: using n and D

 $\mathbf{K}_{\mathrm{T}} \coloneqq \frac{\mathrm{T}}{\mathbf{\rho} \cdot \mathbf{n}^2 \cdot \mathbf{D}^4}$ Thrust $K_Q := \frac{Q}{\rho \cdot n^2 \cdot D^5}$ Torque $\mathbf{J} := \frac{\mathbf{V}_{\mathbf{A}}}{\mathbf{n} \cdot \mathbf{D}}$ advance_velocity $\operatorname{Re}_{\mathrm{D}} := \frac{\mathbf{\rho} \cdot \mathrm{D} \cdot \mathrm{V}_{\mathrm{A}}}{\mu}$ Reynold's number based on diameter: $\sigma_{\mathbf{N}} \coloneqq \frac{\mathbf{p} - \mathbf{p}_{\mathbf{V}}}{\frac{1}{2} \cdot \boldsymbol{\rho} \cdot \mathbf{V}_{\mathbf{A}}^2}$ nominal cavitation index (presure)

dimensional analysis would show:

$$K_T = f(J, Re_D, \sigma_N)$$
 $K_Q = f(J, Re_D, \sigma_N)$

Typical propeller: fully turbulent, hence only weakly dependent on
$$\text{Re}_{D}$$
 deeply submerged, σN not influential, hence:

$$K_T = f(J)$$
 $K_O = f(J)$

substituting the above coefficients ...

recall open water efficiency efficiency

 $\eta_{o} := \frac{\mathbf{T} \cdot \mathbf{V}_{A}}{2 \cdot \pi \cdot \mathbf{n} \cdot \mathbf{Q}_{o}} \qquad \qquad \eta_{o} \to \frac{1}{2} \cdot \mathbf{K}_{T} \cdot \frac{\mathbf{J}}{\pi \cdot \mathbf{K}_{Q}} \qquad \qquad \eta_{o} := \frac{1}{2 \cdot \pi} \cdot \frac{\mathbf{K}_{T}}{\mathbf{K}_{Q}} \cdot \mathbf{J}$

so now we test a model scale propeller ~ 12 inches diameter measuring thrust and torque and plotting non-dimensionally: (10 * K_Q is used for similar scales, K_Q has extra D when non-dimensionalized)

ref: PNA pg 186 ff

Propeller Series Testing

Early series done by Taylor, Gawn, Schaff, NSMB For design purposes NSMB became standard NSMB = Netherlands Ship Model Basin; now MARIN Maritime Research Institute Netherlands

first series designated A were airfoil shapes had some cavitation revised shapes to avoid cavitation: widened blade tips circular section near tip airfoil near hub, etc. designated B series see figure 48 in PNA for geometry

Propeller pitch

Pitch = distance moved along axis of propeller by an imaginary line parallel to the blade chord line for one rotation of the blade

- unvielding fluid - chord defined as line between nose and tip

typically use at r =0.7*R if variable

D = D(r) = D(radius)

B series is family of curves of open water performance at model scale for numbers of blades and area ratio

Blade area ratio A_F/A_0

	(2	0.30	•	•	•	•	•	•	•	•	•	•	•	•		•)
Number of blades Z	3		0.35			0.5			0.65			0.80				.
	4			0.40			0.55			0.70			0.85	•	1.0	
	5				0.45			0.6			0.75					1.05
	6					0.5			0.65			0.80				
	(7			•	•		0.55			0.7	•		0.85		•	.)

above performance curve (K_T, K_Q, η vs. J shown for particular number of blades, P/D A_E/A₀ member designated as: B.5.50 =>

B series

5 blades

0.50 area ratio

This introduced Expanded area ratio =

consider section along cylindrical surface at radius r using helix of pitch P flatten helix rotate to show cross section at radius r

sum expanded section over radius = expanded area of blade * number of blades Z = expanded area EAR (Expanded area ratio) = Expanded area / disk area

EAR =
$$\frac{\text{Expanded}_area}{\text{disk}_area} = \frac{A_E}{\frac{\pi \cdot D^2}{4}}$$

can also express developed area and projected area

see hydrocomp report

z := 5

EAR := 0.75

Troost published a set of these curves in "notebook"

later Oosterveld and Van Oossanen published a set of curves based on an empirical curve fit

ref: "Further Compiuter - Analyzed Data of the Wageningen B-Screw Series", International Shipbuilding Progress, Volume 22

$$K_{T} = f_{1}\left(J, \frac{P}{D}, \frac{A_{E}}{A_{0}}, Z, R_{n}, \frac{t}{c}\right) \qquad \text{and} \dots \qquad K_{Q} = f_{2}\left(J, \frac{P}{D}, \frac{A_{E}}{A_{0}}, Z, R_{n}, \frac{t}{c}\right)$$

the coefficients for Re = 2*10^6 without t/c in the fit are listed in Table 17 page 191 of PNA corrections for t/c and Re can be added later this provides a set of curves as indicated. e.g.

▶ regression coefficients Re=2*10^6

plot for B.5.75 for single value of P/D

$$\begin{aligned} \mathsf{Kt}(\mathsf{J},\mathsf{P_over_D}) &\coloneqq \sum_{n=0}^{38} \left(\mathsf{a}_n \cdot \mathsf{J}^{\mathsf{sKt}_n} \cdot \mathsf{P_over_D}^{\mathsf{tKt}_n} \cdot \mathsf{EAR}^{\mathsf{uKt}_n} \cdot \mathsf{z}^{\mathsf{vKt}_n} \right) \\ \mathsf{Kq}(\mathsf{J},\mathsf{P_over_D}) &\coloneqq \sum_{n=0}^{46} \left(\mathsf{b}_n \cdot \mathsf{J}^{\mathsf{sKq}_n} \cdot \mathsf{P_over_D}^{\mathsf{tKq}_n} \cdot \mathsf{EAR}^{\mathsf{uKq}_n} \cdot \mathsf{z}^{\mathsf{vKq}_n} \right) \end{aligned}$$

 $P_over_D := 0.6$

$$\eta(J, P_over_D) := \frac{Kt(J, P_over_D)}{2 \cdot \pi} \cdot \frac{J}{Kq(J, P_over_D)}$$

$$\eta = \frac{\text{trust_power}}{\text{propeller_power}} = \frac{T \cdot V_A}{Q \cdot 2 \cdot \pi \cdot n} \qquad n = \frac{\text{revolutions}}{\text{second}}$$

$$\frac{\mathrm{T}\cdot\mathrm{V}_{\mathrm{A}}}{\mathrm{Q}\cdot2\cdot\pi\cdot\mathrm{n}} = \frac{\mathrm{T}}{\frac{1}{2}\cdot\rho\cdot\mathrm{n}^{2}\cdot\mathrm{D}^{4}\cdot\mathrm{D}} \cdot \left(\frac{\frac{1}{2}\cdot\rho\cdot\mathrm{n}^{2}\cdot\mathrm{D}^{4}\cdot\mathrm{D}}{\mathrm{Q}}\right) \cdot \frac{\mathrm{V}_{\mathrm{A}}}{2\cdot\pi\cdot\mathrm{n}} = \frac{\mathrm{Kt}}{2\cdot\pi} \cdot \frac{\mathrm{J}}{\mathrm{Kq}}$$

9/8/2006

we have some data problem with polynomials as they calculate some values beyond real data (K $_T$ <0)

$$\mathfrak{m}(J,P_over_D) := if(Kt(J,P_over_D) > 0, \eta(J,P_over_D), 0)$$

 $\underbrace{Kt}(J, P_over_D) := if(Kt(J, P_over_D) > 0, Kt(J, P_over_D), 0)$

$$Kq(J,P_over_D) := if(Kq(J,P_over_D) > 0, Kq(J,P_over_D), 0)$$

plotting constructs

$$EAR := 0.75 \qquad z := 3 \qquad Pover D := 1.2$$

correct η first - before Kt is made positive definite eliminate negative segments - make positive definite

Plot for P/D = 1.4, 1.2, 1.0, 0.8, 0.6 calculated using regression relationships

B_series

<u>z</u>:= 3

EAR := 0.75

Advance Ratio J=VA/nD