Propeller Testing

Screw propeller replaced paddle wheel ~1845 in Great Britain (vessel) - Brunel In test;
independent variables are velocity of advance shaft rotation speed
dependent variables are:
torque Q thrust
$V_{\text {A }}$ n (rev/sec), N (rev/min)

Q

T
i.e. we build a propeller, rotate it a a given speed in a given flow and measure thrust and torque (at this point - conceptually - not practical at full scale)
are considering propeller in general, no ship present, => open water
velocities relative to blade:

test at given n, vary V_{A}, measure thrust (T), torque (Q) and calculate efficiency $\left(\eta_{0}\right)$

typical performance curve at given rotaion speed, note zero efficiency at $\mathrm{V}_{\mathrm{A}}=0$ and $\mathrm{T}=0$

Obviously, testing at full scale impractical, hence use model scale and apply to geopmetrically similar propeller.
Expect performance to depend on:
VA velocity of advance
D diameter of propeller
n rotational speed
ρ fluid density
μ dynamic viscosity ($v=\mu / \rho=$ kinematic viscosity
$p-p_{v}$ pressure of fluid (upstream static pressure) compared to vapor pressure

First non-dimensionalize: using n and D

Thrust

$$
\mathrm{K}_{\mathrm{T}}:=\frac{\mathrm{T}}{\rho \cdot \mathrm{n}^{2} \cdot \mathrm{D}^{4}}
$$

Torque

$$
\mathrm{K}_{\mathrm{Q}}:=\frac{\mathrm{Q}}{\rho \cdot \mathrm{n}^{2} \cdot \mathrm{D}^{5}}
$$

advance_velocity

$$
\mathrm{J}:=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{n} \cdot \mathrm{D}}
$$

Reynold's number based on diameter: $\quad \mathrm{Re}_{\mathrm{D}}:=\frac{\rho \cdot \mathrm{D} \cdot \mathrm{V}_{\mathrm{A}}}{\mu}$
nominal cavitation index (presure)

$$
\sigma_{\mathrm{N}}:=\frac{\mathrm{p}-\mathrm{p}_{\mathrm{V}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{A}}^{2}}
$$

dimensional analysis would show:

$$
\mathrm{K}_{\mathrm{T}}=\mathrm{f}\left(\mathrm{~J}, \mathrm{Re}_{\mathrm{D}}, \sigma_{\mathrm{N}}\right) \quad \mathrm{K}_{\mathrm{Q}}=\mathrm{f}\left(\mathrm{~J}, \mathrm{Re}_{\mathrm{D}}, \sigma_{\mathrm{N}}\right)
$$

Typical propeller: fully turbulent, hence only weakly dependent on Re_{D} deeply submerged, $\sigma \mathrm{N}$ not influential, hence:

$$
\mathrm{K}_{\mathrm{T}}=\mathrm{f}(\mathrm{~J}) \quad \mathrm{K}_{\mathrm{Q}}=\mathrm{f}(\mathrm{~J})
$$

substituting the above coefficients ...
recall open water efficiency efficiency $\quad \eta_{\mathrm{O}}:=\frac{\mathrm{T} \cdot \mathrm{V}_{\mathrm{A}}}{2 \cdot \pi \cdot n \cdot \mathrm{Q}_{\mathrm{O}}} \quad \quad \eta_{\mathrm{O}} \rightarrow \frac{1}{2} \cdot \mathrm{~K}_{\mathrm{T}} \cdot \frac{\mathrm{J}}{\pi \cdot \mathrm{K}_{\mathrm{Q}}} \quad \quad \eta_{\mathrm{O}}:=\frac{1}{2 \cdot \pi} \cdot \frac{\mathrm{~K}_{\mathrm{T}}}{K_{Q}} \cdot \mathrm{~J}$
so now we test a model scale propeller ~ 12 inches diameter measuring thrust and torque and plotting non-dimensionally: $\left(10{ }^{*} \mathrm{~K}_{\mathrm{Q}}\right.$ is used for similar scales, K_{Q} has extra D when non-dimensionalized)

Early series done by Taylor, Gawn, Schaff, NSMB
For design purposes NSMB became standard
NSMB = Netherlands Ship Model Basin; now MARIN Maritime Research Institute Netherlands
first series designated A were airfoil shapes had some cavitation
revised shapes to avoid cavitation:
widened blade tips
circular section near tip
airfoil near hub, etc.
designated B series see figure 48 in PNA for geometry

Propeller pitch

Pitch = distance moved along axis of propeller by an imaginary line parallel to the blade chord line for one rotation of the blade

- unvieldina fluid - chord defined as line between nose and tip

B series is family of curves of open water performance at model scale for numbers of blades and area ratio

above performance curve $\left(K_{T}, K_{Q}, \eta\right.$ vs. J shown for particular number of blades, P/D A_{E} / A_{0} member designated as: B.5.50 =>
B series
5 blades
0.50 area ratio

This introduced Expanded area ratio =
consider section along cylindrical surface at radius r using helix of pitch P flatten helix
rotate to show cross section at radius r
sum expanded section over radius = expanded area of blade * number of blades $\mathrm{Z}=$ expanded area
EAR (Expanded area ratio) $=$ Expanded area / disk area

$$
\mathrm{EAR}=\frac{\text { Expanded_area }}{\text { disk_area }}=\frac{\mathrm{A}_{\mathrm{E}}}{\frac{\pi \cdot \mathrm{D}^{2}}{4}}
$$

can also express developed area and projected area see hydrocomp report

Troost published a set of these curves in "notebook"
later Oosterveld and Van Oossanen published a set of curves based on an empirical curve fit ref: "Further Compiuter - Analyzed Data of the Wageningen B-Screw Series", International Shipbuilding Progress, Volume 22

$$
K_{T}=f_{1}\left(J, \frac{P}{D}, \frac{A_{E}}{A_{0}}, Z, R_{n}, \frac{t}{c}\right) \quad \text { and } \ldots . \quad K_{Q}=f_{2}\left(J, \frac{P}{D}, \frac{A_{E}}{A_{0}}, Z, R_{n}, \frac{t}{c}\right)
$$

the coefficients for $\operatorname{Re}=2 * 10^{\wedge} 6$ without t / c in the fit are listed in Table 17 page 191 of PNA corrections for t / c and Re can be added later
this provides a set of curves as indicated. e.g.
\square regression coefficients $\mathrm{Re}=2^{*} 10^{\wedge} 6$
plot for B.5.75 for single value of P/D

$$
\text { P_over_D := } 0.6
$$

$$
\text { EAR }:=0.75 \quad \mathrm{z}:=5
$$

$$
\begin{aligned}
& \operatorname{Kt}\left(J, P_{-} \text {over_D }\right):=\sum_{n=0}^{38}\left(a_{n} \cdot J^{s K t_{n}} \cdot P_{-} \text {over_D }^{t \mathrm{Kt}_{\mathrm{n}}} \cdot \text { EAR }^{u K t_{n}} \cdot \mathrm{zK} \mathrm{vt}_{\mathrm{n}}\right) \\
& K q\left(J, P_{-} \text {over_D }\right):=\sum_{n=0}^{46}\left(b_{n} \cdot J^{s K q_{n}} \cdot P_{-} \text {over_D }^{t K q_{n}} \cdot E A R^{u K q_{n}} \cdot z^{v K q_{n}}\right) \\
& \eta\left(J, P_{-} \text {over_D }\right):=\frac{\mathrm{Kt}\left(\mathrm{~J}, \mathrm{P}_{-} \text {over_D }\right)}{2 \cdot \pi} \cdot \frac{\mathrm{~J}}{\mathrm{Kq}\left(\mathrm{~J}, \mathrm{P}_{\text {_over_D }}\right)} \\
& \eta=\frac{\text { trust_power }}{\text { propeller_power }}=\frac{\mathrm{T} \cdot \mathrm{~V}_{\mathrm{A}}}{\mathrm{Q} \cdot 2 \cdot \pi \cdot \mathrm{n}} \quad \mathrm{n}=\frac{\text { revolutions }}{\text { second }} \\
& \frac{T \cdot V_{A}}{Q \cdot 2 \cdot \pi \cdot n}=\frac{T}{\frac{1}{2} \cdot \rho \cdot n^{2} \cdot D^{4} \cdot D} \cdot\left(\frac{\frac{1}{2} \cdot \rho \cdot n^{2} \cdot D^{4} \cdot D}{Q}\right) \cdot \frac{V_{A}}{2 \cdot \pi \cdot n}=\frac{K t}{2 \cdot \pi} \cdot \frac{J}{K q}
\end{aligned}
$$

we have some data problem with polynomials as they calculate some values beyond real data $\left(\mathrm{K}_{\mathrm{T}}<0\right)$

$$
\eta_{n}\left(J, P _o v e r _D\right):=\text { if }\left(\operatorname{Kt}\left(J, P_{-} \text {over_D }\right)>0, \eta\left(J, P _o v e r _D\right), 0\right)
$$

Kt(J, P_over_D) := if (Kt(J, P_over_D) > 0, Kt(J, P_over_D), 0)
correct η first - before Kt is made positive definite eliminate negative segments - make positive definite
Kq(J,P_over_D) := if (Kq(J, P_over_D) > 0,Kq(J,P_over_D), 0)

1-plotting constructs

$$
\mathrm{EAR}:=0.75 \quad z:=3 \quad \text { Pover } \mathrm{D}:=1.2
$$

Advance ratio $\mathrm{J}=\mathrm{VA} /(\mathrm{n} * \mathrm{D})$

Plot for P/D = 1.4, 1.2, 1.0, $0.8,0.6$ calculated using regression relationships

