Actuator Disk

assume: propeller is a disk with diameter D and area A
frictionless
no rotation - upstream or downstream model propeller as thin "actuator disk" causing instantaneous increase in pressure

$\mathrm{A}_{1}, \mathrm{D}_{1}, \mathrm{~V}_{\mathrm{A}}+\Delta \mathrm{v}$
D, A, V
$\mathrm{D}_{0}, \mathrm{~A}_{0}, \mathrm{~V}_{\mathrm{A}}$

$$
\begin{equation*}
\text { Thrust }=\mathrm{T}=\mathrm{A} \cdot \Delta \mathrm{p} \tag{10.1}
\end{equation*}
$$

continuity ...

$$
\rho \cdot \mathrm{V} \cdot \mathrm{~A}=\text { constant }
$$

$$
\begin{align*}
& \frac{\mathrm{m} _ \text {dot }}{\rho}=\mathrm{V}_{\mathrm{A}} \cdot \mathrm{~A}_{0}=\mathrm{V} \cdot \mathrm{~A}=\left(\mathrm{V}_{\mathrm{A}}+\Delta \mathrm{v}\right) \cdot \mathrm{A}_{1} \quad \mathrm{~V}_{\mathrm{A}} \cdot \mathrm{D}_{0}^{2}=\mathrm{V} \cdot \mathrm{D}^{2}=\left(\mathrm{V}_{\mathrm{A}}+\Delta \mathrm{v}\right) \cdot \mathrm{D}_{1}^{2} \tag{10.2}\\
& \mathrm{D}_{0}^{2}=\frac{\mathrm{V}}{\mathrm{~V}_{\mathrm{A}}} \cdot \mathrm{D}^{2} \tag{10.3}\\
& \mathrm{D}_{0}:=\sqrt{\frac{\mathrm{V}}{\mathrm{~V}_{\mathrm{A}}}} \cdot \mathrm{D} \tag{10.3a}\\
& \mathrm{D}_{1}{ }^{2}=\frac{\mathrm{V}}{\mathrm{~V}_{\mathrm{A}}+\Delta \mathrm{v}} \cdot \mathrm{D}^{2} \\
&
\end{align*}
$$

$\Delta _$in_momentum $=$thrust_on_disk $=T=\mathrm{m}_{-}$dot $_{\text {out }}\left(\mathrm{V}_{\mathrm{A}}+\Delta \mathrm{v}\right)-\mathrm{m}_{-} \operatorname{dot}_{\mathrm{in}} \cdot \mathrm{V}_{\mathrm{A}}$

$$
\begin{align*}
& \mathrm{T}=\rho \cdot \mathrm{A}_{1} \cdot\left(\mathrm{~V}_{\mathrm{A}}+\Delta \mathrm{v}\right)^{2}-\rho \cdot \mathrm{A}_{0} \cdot \mathrm{~V}_{\mathrm{A}}{ }^{2} \\
& \mathrm{~T}:=\rho \cdot \pi \cdot \frac{\mathrm{D}_{1}{ }^{2}}{4} \cdot\left(\mathrm{~V}_{\mathrm{A}}+\Delta \mathrm{v}\right)^{2}-\rho \cdot \pi \cdot \frac{\mathrm{D}_{0}^{2}}{4} \cdot \mathrm{~V}_{\mathrm{A}}^{2} \tag{10.4}
\end{align*}
$$

$$
\mathrm{T} \text { simplify } \rightarrow \frac{1}{4} \cdot \rho \cdot \pi \cdot \mathrm{~V} \cdot \mathrm{D}^{2} \cdot \Delta \mathrm{v} \quad \text { using (10.3a) above }
$$

now using Bernoulli equation

$$
\mathrm{p}+\frac{1}{2} \cdot \rho \cdot \mathrm{v}^{2}=\text { constant }
$$

on both sides of the disk (a force is applied at the disk)
ahead $\ldots \quad \mathrm{p}+\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2}=\mathrm{p}_{0}+\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{A}}{ }^{2} \quad$ aft $\ldots \quad \mathrm{p}+\Delta \mathrm{p}+\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2}=\mathrm{p}_{0}+\frac{1}{2} \cdot \rho \cdot\left(\mathrm{~V}_{\mathrm{A}}+\Delta \mathrm{v}\right)^{2}$
subtract ahead from aft ... $\quad \Delta \mathrm{p}=\frac{1}{2} \cdot \rho \cdot\left[\left(\mathrm{v}_{\mathrm{A}}+\Delta \mathrm{v}\right)^{2}-\mathrm{v}_{\mathrm{A}}^{2}\right]=\frac{1}{2} \rho \cdot \Delta \mathrm{v} \cdot\left(2 \cdot \mathrm{v}_{\mathrm{A}}+\Delta \mathrm{v}\right)$
result ...

$$
\frac{\left(\mathrm{v}_{\mathrm{A}}+\Delta \mathrm{v}\right)^{2}-\mathrm{v}_{\mathrm{A}}^{2}}{\Delta \mathrm{v}} \text { simplify } \rightarrow 2 \cdot \mathrm{v}_{\mathrm{A}}+\Delta \mathrm{v} \quad \Delta \mathrm{p}:=\frac{1}{2} \rho \cdot \Delta \mathrm{v} \cdot\left(2 \cdot \mathrm{v}_{\mathrm{A}}+\Delta \mathrm{v}\right)
$$

now using (10.1) and equating to (10.5)

$$
\mathrm{A}:=\frac{\pi}{4} \cdot \mathrm{D}^{2}
$$

$$
\mathrm{T}:=\mathrm{A} \cdot \Delta \mathrm{p} \rightarrow \frac{1}{8} \cdot \pi \cdot \mathrm{D}^{2} \cdot \rho \cdot \Delta \mathrm{v} \cdot\left(2 \cdot \mathrm{~V}_{\mathrm{A}}+\Delta \mathrm{v}\right)
$$

$$
\begin{equation*}
\mathrm{T}:=\frac{1}{4} \cdot \rho \cdot \pi \cdot \mathrm{~V} \cdot \mathrm{D}^{2} \cdot \Delta \mathrm{~V} \tag{10.5}
\end{equation*}
$$

$$
\text { from which ... } \quad \mathrm{V}:=\mathrm{V}_{\mathrm{A}}+\frac{\Delta \mathrm{v}}{2}
$$

$$
\begin{equation*}
\text { so } \ldots . \quad \mathrm{T} \rightarrow \frac{1}{4} \cdot \pi \cdot \mathrm{D}^{2} \cdot \rho \cdot\left(\mathrm{v}_{\mathrm{A}}+\frac{1}{2} \cdot \Delta \mathrm{v}\right) \cdot \Delta \mathrm{v} \quad \mathrm{~T}:=\frac{\pi}{4} \cdot \mathrm{D}^{2} \cdot \rho \cdot\left(\mathrm{~V}_{\mathrm{A}}+\frac{\Delta \mathrm{v}}{2}\right) \cdot \Delta \mathrm{v} \tag{10.9}
\end{equation*}
$$

define a thrust loading coefficient ...

$$
\begin{equation*}
\mathrm{C}_{\mathrm{T}}:=\frac{\mathrm{T}}{\frac{1}{2} \cdot \rho \cdot \frac{\pi}{4} \cdot \mathrm{D}^{2} \cdot \mathrm{~V}_{\mathrm{A}}^{2}} \quad \text { substitute (10.9) } \quad \mathrm{C}_{\mathrm{T}} \rightarrow 2 \cdot\left(\mathrm{~V}_{\mathrm{A}}+\frac{1}{2} \cdot \Delta \mathrm{v}\right) \cdot \frac{\Delta \mathrm{v}}{\mathrm{~V}_{\mathrm{A}}{ }^{2}} \quad \text { a quadratic in } \Delta \mathrm{v} \tag{10.10}
\end{equation*}
$$

$$
\begin{align*}
& \text { Given } \\
& \mathrm{C}_{\mathrm{T}}=2 \cdot\left(\mathrm{v}_{\mathrm{A}}+\frac{1}{2} \cdot \Delta \mathrm{v}\right) \cdot \frac{\Delta \mathrm{v}}{\mathrm{~V}_{\mathrm{A}}{ }^{2}} \quad \frac{\operatorname{Find}(\Delta \mathrm{v})}{\mathrm{V}_{\mathrm{A}}} \rightarrow\left[(-1)+\left(1+\mathrm{C}_{\mathrm{T}}\right)^{\frac{1}{2}}(-1)-\left(1+\mathrm{C}_{\mathrm{T}}\right)^{\frac{1}{2}}\right] \\
& \text { taking only positive root } \quad \frac{\Delta \mathrm{v}}{\mathrm{~V}_{\mathrm{A}}}=(-1)+\left(1+\mathrm{C}_{\mathrm{T}}\right)^{\frac{1}{2}} \\
& \eta_{\mathrm{I}}=\text { ideal_efficiency }=\frac{\text { useful_work_from_disk }}{\text { work_done_on_fluid_by_thrust_per_unit_time }}=\frac{\mathrm{P}_{\mathrm{T}}}{\mathrm{P}_{\text {added }}}=\frac{\mathrm{T} \cdot \mathrm{~V}_{\mathrm{A}}}{\mathrm{~T} \cdot \mathrm{~V}} \\
& \eta_{\mathrm{I}}:=\frac{\mathrm{T} \cdot \mathrm{~V}_{\mathrm{A}}}{\mathrm{~T} \cdot \mathrm{~V}} \rightarrow \frac{1}{\mathrm{~V}_{\mathrm{A}}+\frac{1}{2} \cdot \Delta \mathrm{v}} \cdot \mathrm{~V}_{\mathrm{A}} \quad \text { uses relationship for } \mathrm{V} \text { above (10.9) } \tag{10.11}\\
& \text { with } \ldots \quad \Delta \mathrm{v}:=\mathrm{V}_{\mathrm{A}} \cdot\left[(-1)+\left(1+\mathrm{C}_{\mathrm{T}}\right)^{\frac{1}{2}}\right] \quad \eta_{\mathrm{I}}:=\frac{1}{1+\frac{1}{2} \cdot \frac{\Delta \mathrm{v}}{\mathrm{~V}_{\mathrm{A}}}} \text { simplify } \rightarrow \frac{2}{1+\left(1+\mathrm{C}_{\mathrm{T}}\right)^{\frac{1}{2}}} \tag{10.12}
\end{align*}
$$

create plot with loading

$$
\mathrm{C}_{\mathrm{T}}:=\left(\begin{array}{l}
0 \\
1 \\
2 \\
3 \\
4
\end{array}\right) \quad \mathrm{i}:=0 . .4 \quad \eta_{\mathrm{I}_{\mathrm{i}}}:=\frac{2}{1+\sqrt{1+\mathrm{C}_{\mathrm{T}}}} \quad \quad \eta_{\mathrm{I}}=\left(\begin{array}{c}
1 \\
0.828 \\
0.732 \\
0.667 \\
0.618
\end{array}\right) \quad \text { as shown in PNA }
$$

Observations: 1). Propeller at high load coefficient C_{T} less efficient
2). $\quad \eta_{\mathrm{I}}:=\frac{1}{1+\frac{1}{2} \cdot \frac{\Delta \mathrm{v}}{\mathrm{V}_{\mathrm{A}}}} \quad \Rightarrow \quad$ efficiency maximum when $\Delta \mathrm{v}$ small
3) for given thrust $\mathrm{T}, \quad \mathrm{T} \rightarrow \frac{1}{4} \cdot \pi \cdot \mathrm{D}^{2} \cdot \rho \cdot\left(\mathrm{~V}_{\mathrm{A}}+\frac{1}{2} \cdot \Delta \mathrm{v}\right) \cdot \Delta \mathrm{v} \quad \begin{aligned} & \Delta \mathrm{v} \text { small }=>\mathrm{D} \text { large }=>\text { propeller } \\ & \text { diameter large }\end{aligned}$

