Cavitation Notes

$$
\begin{array}{ll}
\mathrm{p}_{0}=\text { uniform_stream_total_pressure } & \mathrm{p}_{1}=\text { pressure_at_arbitrary_point } \\
\mathrm{V}_{0}=\text { uniform_stream_velocity } & \mathrm{V}_{1}=\text { velocity_at_arbitrary_point } \\
\mathrm{q}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{0}{ }^{2}=\text { dynamic_or_stagnation_or_ram_pressure } \\
\mathrm{p}_{0}+\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{0}^{2}=\text { constant } & \text { Bernoulli } \\
\mathrm{p}_{0}:=\text { constant }-\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{0}^{2} & \mathrm{p}_{1}:=\text { constant }-\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{1}^{2}
\end{array}
$$

ref: PNA pages 181-183
handout
for propeller immersion, measured at radius r, minimum p_{0} is obtained from...

$$
\begin{aligned}
& \mathrm{p}_{0}=\mathrm{p}_{\mathrm{a}}+\rho \cdot \mathrm{g} \cdot \mathrm{~h}-\rho \cdot \mathrm{g} \cdot \mathrm{r} \quad \mathrm{p}_{\mathrm{a}} \\
&=\text { atmosphere } \\
& \mathrm{h}=\text { shaft_centerline_immersion } \\
& \rho \cdot g \cdot r \quad \text { accounts for minimum when } r \text { vertical up }
\end{aligned}
$$

V_{0} estimated as $\left(V^{\wedge} 2+\left(\omega^{*} r\right)^{\wedge} 2\right)^{0.5} \quad$ if $p_{1}=>p_{v}=$ vapor pressure, cavitation occurs
define: $\quad \sigma_{L}=$ local_cavitation_number $=\frac{p_{a}+\rho \cdot g \cdot h-\rho \cdot g \cdot r-p_{v}}{\frac{\rho}{2} \cdot\left(V_{A}^{2}+\omega^{2} \cdot r^{2}\right)} \quad \begin{aligned} & \text { and if pressure REDUCTION } / q \\ & >=\sigma_{L}\end{aligned}$
early criteria (Barnaby) suggested limiting average thrust per unit area to certain values (76.7 $\mathrm{kN} / \mathrm{m}^{2}=10.8 \mathrm{psi}$) for tip immersion of 11 in increasing by 0.35 psi (unit conversions don't match up)

$$
76.7 \frac{\mathrm{kN}}{\mathrm{~m}^{2}}=11.124 \mathrm{psi} \quad \text { earlier PNA (1967) stated Barnaby suggested } 11.25 \mathrm{psi}
$$

can calculate pressure distributions around blade so can calculate local cavitation situation
early in propeller design, want blade area to avoid cavitation (more blade area, less pressure per unit area for given thrust)

Burrill ((1943) "Developments in Propeller Design and Manufacture for Merchant Ships", Trans. Institute of Marine Engineers, London, Vol. 55) proposed guidance as follows: limit thrust (coefficient) to a certain value depending on cavitation number at the 0.7 radius
$\tau_{\mathrm{c}}=$ coefficient_expressing_mean_loading_on_blades

$$
\mathrm{T}=\text { thrust } \quad \rho=\text { water_density }
$$

$$
\tau_{\mathrm{c}}=\frac{\frac{\mathrm{T}}{\mathrm{~A}_{\mathrm{P}}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{R}}^{2}}
$$

$$
\mathrm{A}_{\mathrm{P}}=\text { projected_area } \quad \mathrm{V}_{\mathrm{R}}=\text { relative_velocity_of_water_at_0_7_radius }
$$

can estimate projected area from

$$
\frac{\mathrm{A}_{\mathrm{P}}}{\mathrm{~A}_{\mathrm{D}}}=1.067-0.229 \cdot \frac{\mathrm{P}}{\mathrm{D}}
$$

from Taylor S \& P page 91 P/D from 0.6 to 2.0 elliptical bladed prop, hub $=0.2 \mathrm{D}$
and as usual $\ldots \quad \mathrm{T}=\frac{\mathrm{P}_{\mathrm{E}}}{(1-\mathrm{t}) \cdot \mathrm{V}}=\frac{\mathrm{P}_{\mathrm{D}} \cdot \eta_{D}}{(1-\mathrm{t}) \cdot \mathrm{V}} \quad \mathrm{P}_{\mathrm{D}}=$ delivered_power $\quad \mathrm{R}_{\mathrm{T}}=\mathrm{T} \cdot(1-\mathrm{t})$

$$
\mathrm{P}_{\mathrm{E}}=\text { effective_power } \quad \mathrm{P}_{\mathrm{E}}=\mathrm{R}_{\mathrm{T}} \cdot \mathrm{~V}
$$

$\eta_{D}=$ quasi_propulsive_coefficient $=\frac{P_{E}}{P_{D}}=\eta_{H} \cdot \eta_{R} \cdot \eta_{o} \quad \quad \eta_{H}=\frac{1-t}{1-w}$
this parameter is plotted versus $\quad \sigma_{0.7}$ cavitation number at $0.7^{*} \mathrm{r}$ using relative velocity at $0.7^{*} \mathrm{r}$ and pressure at CENTERLINE

$$
\Omega_{\mathrm{N}}=1.0259 \cdot 10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \rho=1.99057 \frac{\text { slug }}{\mathrm{ft}^{3}}
$$

$$
\sigma_{0.7}=\frac{\mathrm{p}_{0}+\rho \cdot \mathrm{g} \cdot \mathrm{~h}-\mathrm{p}_{\mathrm{V}}}{\frac{1}{2} \cdot \rho \cdot\left[\mathrm{~V}_{\mathrm{A}}^{2}+(0.7 \cdot \pi \cdot \mathrm{n} \cdot \mathrm{D})^{2}\right]}=\frac{188.2+19.62 \cdot \mathrm{~h}}{\mathrm{~V}_{\mathrm{A}}^{2}+4.836 \cdot(\mathrm{n} \cdot \mathrm{D})^{2}} \quad \mathrm{D}=\mathrm{m} \quad \mathrm{n}=\sec ^{-1 \quad \begin{array}{l}
\text { units in PNA (61) } \\
\text { approximation SI } \\
\text { pv apparently } \sim \\
0.69 \text { psi }(90 \text { degF) }
\end{array}}
$$

\square

$$
\sigma_{0.7}=\frac{2026+64.4 \cdot}{\mathrm{~V}_{\mathrm{A}}^{2}+4.836 \cdot(\mathrm{n} \cdot \mathrm{D})^{2}} \quad \text { in US units }
$$

Carmichael correlation

$$
\mathrm{C}:=\frac{\tau_{\mathrm{c}}+0.3064-0.523 \cdot \sigma^{0.2}}{0.0305 \cdot \sigma^{0.2}-0.0174} \quad \begin{aligned}
& \mathrm{C}=\text { cavitation } \% \\
& \sigma \text { at } 0.7 \text { radius as } \\
& \begin{array}{l}
\text { above (centerline } \\
\text { immersion) }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { example numbers } \\
& \sigma:=0.4 \\
& \tau_{\mathrm{c}}:=0.2
\end{aligned} \quad \underset{\sim}{C}:=\frac{\tau_{\mathrm{c}}+0.3064-0.523 \cdot \sigma^{0.2}}{0.0305 \cdot \sigma^{0.2}-0.0174} \quad \text { for } \mathrm{C}<=25(\%) \text { or so } \quad \mathrm{C}=8.88 \quad \text { \% cavitati }
$$

this can be carried further into ...

$$
\tau_{\mathrm{c}}=\frac{\frac{\mathrm{T}}{\mathrm{~A}_{\mathrm{P}}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{R}}^{2}}=\left[\mathrm{C} \cdot\left(0.0305 \cdot \sigma^{0.2}-0.0174\right)+0.523 \cdot \sigma^{0.2}-0.3064\right]
$$

$$
\mathrm{A}_{\mathrm{P}}=\frac{\mathrm{T}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{R}}^{2} \cdot\left[\mathrm{C} \cdot\left(0.0305 \cdot \sigma^{0.2}-0.0174\right)+0.523 \cdot \sigma^{0.2}-0.3064\right]} \mathrm{A}_{\mathrm{p}}=\text { minimum_area_for_specified_cavitation }
$$

Carmichael correlation valid only for $\mathrm{C}<=25$ \%. 30 \% shown to indicate over estimates compared with fig 45 page 182 of PNA
for example from prop_design_notes
derived above

$$
\mathrm{rpm}:=\min ^{-1} \quad \mathrm{kt}:=1.688 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
\begin{aligned}
\mathrm{TN}_{\mathrm{N}}:=278000 \mathrm{lbf} & \mathrm{~V}_{\mathrm{A}}:=14 \mathrm{kt} \\
\mathrm{n}:=218 \mathrm{rpm} & \mathrm{p}_{0}=14.696 \mathrm{psi} \\
\mathrm{D}:=15 \mathrm{ft} & \mathrm{p}_{\mathrm{V}}=0.694 \mathrm{psi}
\end{aligned}
$$

$$
\text { P_over_D }:=0.8 \quad \mathrm{~h}:=10 \mathrm{ft}
$$

$\sigma_{0.7 \cdot \mathrm{r}}=\frac{\mathrm{p}_{0}+\rho \cdot \mathrm{g} \cdot \mathrm{h}-\mathrm{p}_{\mathrm{V}}}{\frac{1}{2} \cdot \rho \cdot\left[\mathrm{~V}_{\mathrm{A}}{ }^{2}+(0.7 \cdot \pi \cdot \mathrm{n} \cdot \mathrm{D})^{2}\right]}=\frac{188.2+19.62 \cdot \mathrm{~h}}{\mathrm{~V}_{\mathrm{A}}{ }^{2}+4.836 \cdot(\mathrm{n} \cdot \mathrm{D})^{2}} \quad \mathrm{~V}_{\mathrm{A}}=\frac{\mathrm{m}}{\mathrm{sec}} \quad \mathrm{D}=\mathrm{m} \quad \mathrm{h}=\mathrm{m} \quad \mathrm{n}=\mathrm{sec}^{-1}$
$\underset{\sim}{\alpha}:=\frac{\mathrm{p}_{0}+\rho \cdot \mathrm{g} \cdot \mathrm{h}-\mathrm{p}_{\mathrm{v}}}{\frac{1}{2} \cdot \rho \cdot\left[\mathrm{~V}_{\mathrm{A}}{ }^{2}+(0.7 \cdot \pi \cdot \mathrm{n} \cdot \mathrm{D})^{2}\right]} \quad \sigma=0.179$

$$
\mathrm{V}_{\mathrm{A}}=7.203 \frac{\mathrm{~m}}{\mathrm{~s}} \mathrm{D}=4.572 \mathrm{~m} \quad \mathrm{~h}=3.048 \mathrm{~m} \mathrm{n}=3.633 \frac{1}{\mathrm{~s}}
$$

$\frac{188.2+19.62 \cdot 3.048}{7.203^{2}+4.836 \cdot(3.633 \cdot 4.572)^{2}}=0.179 \quad \begin{aligned} & \text { using SI } \\ & \text { approximation }\end{aligned}$
consider \% cavitation in steps of 5\%

$$
\underset{\sim}{C}:=5,10 . .25
$$

$$
\mathrm{V}_{\mathrm{R}}:=\left[\mathrm{V}_{\mathrm{A}}^{2}+(0.7 \pi \mathrm{n} \cdot \mathrm{D})^{2}\right]^{0.5}
$$

$$
\mathrm{V}_{\mathrm{R}}=37.234 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\begin{array}{ll}
\mathrm{A}_{\mathrm{P}}(\mathrm{C}):=\frac{\mathrm{T}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{R}}^{2} \cdot\left[\mathrm{C} \cdot\left(0.0305 \cdot \sigma^{0.2}-0.0174\right)+0.523 \cdot \sigma^{0.2}-0.3064\right]} & \frac{\mathrm{A}_{\mathrm{P}}}{\mathrm{~A}_{\mathrm{D}}}=1.067-0.229 \cdot \frac{\mathrm{P}}{\mathrm{D}} \text { assume } \mathrm{AD} \sim \mathrm{AE} \\
& \mathrm{~A}_{\mathrm{E}}(\mathrm{C}):=\frac{\mathrm{A}_{\mathrm{P}}(\mathrm{C})}{1.067-0.229 \cdot \mathrm{P}_{-} \text {over_D }}
\end{array}
$$

cavitation \%

$\mathrm{C}=$	$\mathrm{A}(\mathrm{C})=$
5 10 15 20 25 20.367 16.333 13.632 11.698 10.245	

estimated minimum EAR to avoid

$\mathrm{A}_{\mathrm{E}}(\mathrm{C})=$	m^{2}	$\mathrm{A}_{\mathrm{E}}(\mathrm{C})$
23.045		D^{2}
18.48		4
15.425		1.404
13.236		1.126
11.592		0.94
		0.806
		0.706

supercavitating $\tau_{\mathrm{c}} \sigma$ to the left. σ very low
cavitation \% is 100
to avoid 25\% cavitation

$$
\underset{\sim}{C}:=25
$$

$$
\tau_{\sim}^{\tau}(\mathrm{C}, \sigma):=\mathrm{C} \cdot\left(0.0305 \cdot \sigma^{0.2}-0.0174\right)+0.523 \cdot \sigma^{0.2}-0.3064 \quad \tau_{\mathrm{c}}(\mathrm{C}, \sigma)=-0.243
$$

off the scale hence supercavitating propellers correlation not valid but trend is ok

$$
\begin{aligned}
& \mathrm{h}=3.048 \mathrm{~m} \quad \mathrm{D}=4.572 \mathrm{~m} \\
& \mathrm{~V}_{\mathrm{A}}=7.203 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{n}=218 \frac{1}{\mathrm{~min}} \\
& 0.7 \cdot \pi \cdot \mathrm{n} \cdot \mathrm{D}=36.531 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \underset{\mathrm{MA}}{\mathrm{~V}}:=10 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{n}:=1000 \mathrm{rpm} \quad 0.7 \cdot \pi \cdot \mathrm{n} \cdot \mathrm{D}=167.573 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \sigma_{0.7 \cdot \mathrm{r}}=\frac{\mathrm{p}_{0}+\rho \cdot \mathrm{g} \cdot \mathrm{~h}-\mathrm{p}_{\mathrm{V}}}{\frac{1}{2} \cdot \rho \cdot\left[\mathrm{~V}_{\mathrm{A}}{ }^{2}+(0.7 \cdot \pi \cdot \mathrm{n} \cdot \mathrm{D})^{2}\right]} \\
& \underset{\sim}{\sim}:=\frac{p_{0}+\rho \cdot g \cdot h-p_{v}}{\frac{1}{2} \cdot \rho \cdot\left[\mathrm{~V}_{\mathrm{A}}{ }^{2}+(0.7 \cdot \pi \cdot \mathrm{n} \cdot \mathrm{D})^{2}\right]} \\
& \sigma=8.8 \times 10^{-3}
\end{aligned}
$$

