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MATLAB FOR 2.672 

This is a short introduction to the MATLAB software. The idea is to enable you to use MATLAB quickly. 

Refer to the MATLAB REFERENCE MANUAL for more sophisticated operations. 

TO USE MATLAB - click the MATLAB icon. It will set up your directory as default for you so that you can 

access your files. 

CONCEPTS 

o MATLAB is a giant calculator which remembers the values of all the variables you have calculated. 

- The command you type in is executed every time you hit a carriage return (CR). Use the up-and-down 

arrow keys to recall previous commands. 

- Sometimes you do not want the intermediate results to be printed (e.g., when you are calculating the 

values of a thousand numbers). To do this, end the command with semi-colon, before the CR. 

-	 For a very long command that you cannot finish in one line, the line can be continued to the next by using 

the ellipsis consisting of three dots..., before the CR. 

o	 One can store a set of commands in a script file and recall it to be used. More of this later in the section 

SCRIPT FILES. (Using a script file is preferred if you have to do any serious calculations because then 

you have a record of all the commands you put in, and you can edit them and redo the command sequence 

easily.) 

o	 If you want to clear your "calculator," use the command CLEAR. You can clear a specific variable by 

CLEAR variable_name. 

o	 Variables in MATLAB are case sensitive!!! If you prefer, you could adapt the convention of using lower­

case characters for scalars and upper-case characters for vectors and matrices. 

o	 MATLAB stands for MATRIX LABORATORY; therefore, the basic representation of information is in 

terms of matrices. A number, or scalar, is a 1x1 matrix. In 2.672, we mostly deal with vectors (e.g., an 

array of data). Because the software is matrix-based, there can be quite a bit of confusion if you are not 

careful. For example, if x is a 5x1 matrix (i.e., a column vector of 5 elements), X*X is illegal. On the other 

hand X*X' (X' stands for the transpose of X) will give you a scalar. 

o	 You can always click the HELP icon to search for information within MATLAB. 

BASIC OPERATIONS 

o The operators +,-,*,/,^ have the usual meaning.  (The last one is to raise power.) 

- operation between a scalar (s) and a matrix (A) is straight forward; e.g. s*A means that every element of A 

is multiply by s. 

- For operations between matrices (vectors are special case of matrices: a row vector of n elements is a nx1 

matrix; a column vector is a 1xn matrix), you have to be careful that the dimensions match, or you will get 

error messages. 

- Division means multiplication by the inverse matrix. As such, there are two different symbols: the right 

division, e.g. A/B = A*B-1, and the left division, e.g. C\D = C-1*D. 

- In most of the applications, we want to do element-by-element operation. To do this, precede the 

operator by a dot. e.g. If X=[1,2,3] and Y=[2,4,6]. Then X*Y is illegal, but X .*Y=[2,8,18]. Use X . ^2 

to obtain the square of the elements of X in the above example. 

o Complex numbers - Numbers can be complex. When you first start MATLAB, (or after a CLEAR 

command,) the symbols i and j are given the value of sqrt(-1). Thus you can enter complex numbers such as 

x=4+5*i. (In this case, because you are entering a pure number instead of an expression, you do not have to 

use the multiplication sign, thus x=4+5i  or x= 4+5j are valid.) (Think about applications when you have to do 
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complex transfer functions.) If you have used i and j for some other things, you can recreate them by setting 

i=sqrt(-1) etc. 

o To access the elements of a vector - For vector X (does not matter whether it is a column or row vector), 

X(n) is the nthelement of X. 

o To access the elements of a matrix - For matrix A, A(m,n) refers to the element in the mthrow and the nth 

column. 

o The range operator (:) - It is convenient to be able to refer to a range of elements. The colon symbol does 

that. e.g. for a vector X, V=X(3:5) is a vector (row or column vector, corresponding to that of X) of length 3, 

with V(1)=X(3), V(2)=X(4), V(3)=X(5). Similarly for a matrix A, A(2,7:9) refers to the second row, and 

elements A(2,7), A(2,8),A(2,9). 

o The extremely useful expression is the range operator without range specification. Then, it refers to the 

whole range. For example A(:,3) refers to the third column of the matrix A, and B(2,:) refers to the second 

row of A. 

o There are a lot of other useful operations such as looping, logical test, etc. which are not described in here.  

Refer to the manual or the on-line HELP if you need to use them. To learn about looping, type HELP FOR; 

to learn about logic test, type HELP IF. 

BUILT-IN FUNCTIONS 

There are many built-in functions, such as all the standard ones (sin, cos, tan, exp, sqrt etc.) and many special 

ones, such as quad (to integrate a function by quadrature). In addition, we have prepared several functions for 

the 2.672 lab, such as steam_p (to evaluate the saturated thermodynamic properties of water for an input 

pressure) and fitplot (to fit a polynomial of nth degree to data and plot the data as points and the fit as line).  See 

the MATLAB REFERENCE MANUAL for listing of built-in functions, or click the HELP icon for on-line 

listing.  A short listing of the 2.672 built-in functions can be found at the end of this manuscript. 

ENTERING NUMBERS BY HAND 

o	 Scalar.  Entering a scalar is obvious, e.g., s=5. 

o	 Row Vector. To enter a row vector, start off with the left square bracket and end with the right square 

bracket. For example, X=[1,2,3,4,5] is a 1x5 vector. If it is a very long vector, use the ... line continuation 

method. 

o	 Column Vector. To enter a column vector, the method is similar to the row vector, except that the 

elements are separated by semi-colons instead of commas. For example, Y=[2;4;6;8] is a 4x1 vector.  

Another way to do this is to use the transpose operator; i.e., enter as Y=[2,4,6,8]‟. 

o	 Range Operator. The range operator (:) is very useful for entering numbers. For example: X=[1:5] is 

the vector [1,2,3,4,5]. Even more useful, is the range with increment specification, i.e., 

start:increment:end. For example, Y=[0:0.2:1] is the vector [0,0.2,0.4,0.6,0.8,1.0].  The latter construction 

is very useful if you want to specify a range to calculate a function (e.g., the range of frequency to calculate 

the transfer function). 

o	 Matrix.  Entering the values of the elements of a matrix can best be illustrated by an example. 
X=[1,2,3 

4,5,6] 

is the 2x3 matrix. Alternatively, you can enter it as X=[1,2,3;4,5,6], with the rows separated by the 

semicolon.  Note that the construction is consistent with that of the row and column vectors. 
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IMPORTING DATA FILES FROM THE DATA ACQUISITION SYSTEM


In the data acquisition package, choose to save the data in the matlab format. Give it a file name, for example 

xyz (the first character of the filename should be non-numeric; do not use any extension, because the default 

extension is .m). Then go to the MATLAB window and type in the filename as a command; in this case, it is 

xyz. The data will be imported. The data will also be plotted. Use the command whos to find out what are the 

data variable names. 

Often you want to pick off values from the plot. The following command reads off n points on the plot and 

puts the coordinates into arrays x and y. 
[x,y]=ginput(n) 

You have to enter a value for n.  For example, if you enter [x,y]=ginput(4), a cross-hair will appear on the figure 

of the plot. Use the mouse to locate the cross-hair on your curve. Clicking the mouse will enter the coordinate 

of the cross-hair into x and y. Repeat the process four times to finish the command and get four pair of 

coordinates in the arrays x and y. Note that the process does not terminate until all n points are done. (To kill 

the process, use ctl-c.) 

To access the variables in the acquired data, use the function getdata which can be downloaded from the 2.672 

web page.  After you download it to your working directory, type help getdata to learn how to use the function. 

PLOTTING


The strategy is to create the plot (using auto-scaling) first, and to rescale the axes if necessary, add titles, axes 

labels etc. later. The plot appears in another window called "Figure 1" (and "Figure 2" etc. if you have more 

than one plot). To print the graph, go to this window and click the file icon. See later for option to import the 

graph to Microsoft Word document. 

The plot command creates a 2D plot of vectors or matrices. Use plot(X,Y) to plot vector X versus vector Y.  If 

X or Y is a matrix, the vector is plotted versus the rows or columns of the matrix, whichever line up. 

plot(Y) plots the columns of Y versus their index. If Y is complex, plot(Y) is equivalent to 

plot(real(Y),imag(Y)).  In all other uses of plot, the imaginary part is ignored. 

Various line types and plot symbols may be obtained with plot(X,Y,S) where S is a character enclosed in ' ' 

selecting the plot style as follows: 

. point - solid line 

o circle : dotted line

x x-mark -. dash-dot line

+ plus -- dashed line 

* star 

For example, plot (X,Y,'o') plots a circle symbol at each data point, and plot(X,Y,'-') connects the data points

with a solid line.


plot (X1,Y1,S1,X2,Y2,S2,X3,Y3,S3,...) combines the plots defined by the (X,Y,S) triples, where the X's and Y's 

are vectors or matrices and the S's are strings.  X1,Y1,S1 are for the first plot; X2,Y2,S2 are for the second; etc.


Now that you have the plot, you can make it look nice by the following commands:


To re-scale the axis, use the command axis([xmin, xmax, ymin,ymax]). Note that the [ ] is necessary because

the argument to the function AXIS is actually a 1x4 vector. You may use the functions xlim and ylim to set the

x and y axis limits respectively.

To add axes labels and title, use xlabel('text'), ylabel('text') and title('text').
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Use gtext(„text‟) to add text any where on the graph. A cross-hair will show up. Use the mouse to move it to

position and click.

To create a log-log plot, substitute the command plot (...) by logplot (...). Similar substitutions are used for

semilogx, and semilogy.


See the manual or use the HELP icon for more advance topics such as multiple plots on a page (SUBPLOT),

overlaid plots (HOLD), and freezing the axes scales etc. You can also use the edit manual to make the lines

thicker etc.


FITPLOT - Many times, one has to fit a curve to data points. This procedure is done by a 2.672 built-in

function.


C=fitplot(X,Y,n) fits a nth degree polynomial to the data, and plot the data points as circles and the fit as a solid

line. The fit coefficients are put in the vector C in order of descending powers. For example C=fitplot(X,Y,1)

would do a linear fit, with y=C(1)*x+C(2).


Often you have to look at the exponential decay coefficient of y as a function of t.  The command:

C = fitplot(T,LOG(Y),1) 

will do the trick.  The information is then in C(1). 

TO IMPORT GRAPHS TO MICROSOFT WORD DOCUMENT


If you want your graph to appear as a picture in the Word document, first create the graph in Matlab, and copy it 

using the edit menu. Then the graph is copied onto the clipboard as a Window metafile ready to be pasted onto 

a Word document. 

SCRIPT FILES


These are files containing commands that you can recall to reuse again and again. These files have to have the 

file extension .m. 

To create them, click the file icon, follow by the new icon, and then follow by the M_file icon. Then the 

Matlab editor will come up, and you can type in your commands. Afterwards hit the file icon; follow by the 

save as icon. You'll be asked for the filename etc. Save the file with extension .m. After successfully saving 

what you have typed in the file, the program will return to the editor. Then click the file icon again, and click 

exit. 

To edit a previous file, click the file icon; follow by the open m file icon. Then the procedure is as in the 

above. 

There are two kinds of script files: 

The command script files--This is a collection of commands. To invoke them in a MATLAB session, type in 

the filename of the script file (without extension, because the default extension is .m). Then all the commands 

in the file will be inserted and executed. 

Hints- (a) It is useful to document your script file with comments. Anything starting with a % symbol is a 

comment.  The comment could either start at the beginning or anywhere in a line. 

(b) Usually, you don't want the intermediate results to be displayed. 	 End the commands with ; in the 

script file. 

The function subroutine script files - These are files that you can call within a MATLAB command as a 

function. The filename in which the function subroutine is stored must be the same as the function name (i.e., 

name in the following), with the extension .m. The first line of these files must be: 
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FUNCTION output = name(argument1, argument2, ...) 

where output is the name of the scalar, vector or matrix containing the output of the function evaluation, name 

is the name you give to the function, and argument1,... are the arguments passed down from the calling 

program. 

Note that the names given to output and all the arguments are "dummy variable names"; i.e., you can think of 

them as if they take on the names of the variables used in the calling program during execution. Note also that 

all the internal variables are not saved and are released after the functional call. 

As an example, the following is the fitplot program in fitplot.m. 

function c=fitplot(x,y,n) 

% fit n th degree polynomial to input vectors x,y 

% fit coefficients output in c, fit is c(1)*x^n+...+c(n)*x^n+c(n+1) 

% then plot the input vector pairs as points and the fit as line 

c=[]; %Zero out output vector c 

c=polyfit(x,y,n); %Call the built-in function polyfit to do the least square fit 

x1=min(x); %Get the minimum and maximum of the input array x 

x2=max(x); 

xout=[x1:(x2-x1)/99:x2]; %Generate the x and y values for the plot, note that these values 

yout=polyval(c,xout); %are not passed back to the calling program, but are released 

%after exit 

plot(x,y,'o',xout,yout,'-'); %Plot the input data as points and fit values as line 

INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS (ODE)


The steps in integrating ordinary differential equations are: (These steps will be made clearer with an example 

later.) 

1.	 Rewrite the higher order ordinary differential equation as a set of first-order differential equations. This can 

be easily done by renaming the derivatives as other new variables. Say the variables are y1,y2,..., and the 

independent variable is t. 

2.	 Write a function subroutine m file to evaluate the derivatives, i.e., dy1/dt, dy2/dt,... 

3.	 Call the built-in ode solver ode45 which stands for solving ode by 4th and 5th order Runge-Kutta method. 

The calling format is : [t,y] = ode45(@ydot, [t0,tfinal], y0). 

t is the output vector containing the independent variable (t) in the course of the integration 

y is the solution matrix. Each column corresponds to the components Y1, Y2,... The rows are the 

values evaluated at time points contained in T. 

ydot is the name of the function m file (i.e. the filename is ydot.m) containing the formula for 

evaluation of the derivatives.  The ydot.m file may look like this: 

dydt = function ydot(t,Y); 

dydt(1) = expression; %which can contain t and components of Y 

dydt(2)=..... etc. %In these expressions, dydt are the derivatives of 

%y(1),y(2)...Note that dydt must be a column vector 

t0 is the initial time 

tfinal is the final time (the end of the integration) 

y0 is the initial condition column vector 

The above procedure can best be illustrated with an example. Consider the solution to the mass/spring/damper 

system released from an initial position x0 from the equilibrium position.  The ode is: 

m
d x

dt
b

dx

dt
kx

2

2
0  

with initial condition x(0)=x0 and dx/dt(0)=0. (Note that in solving the problem numerically, we have to put in 

numerical values for the parameters.  Let's use m = 1, b = 2, k= 3, x0 = 4, t0 = 0, tfinal = 5 as an example.  These 

values are purely arbitrary here. Note that in real problems, you have to use a consistent set of units for 

numerical values.) The equation can be reduced to two first order ode by defining v=dx/dt, then 

26




____________________________________________________________________________________ 

dx/dt = v, and

dv/dt = -(bv+kx)/m


To use the ode function, we have to put the equations in vector form. We'll use y=[x,v]‟ and dy/dt=[dx/dt, 

dv/dt]‟. (Note that Matlab requires them to be both column vectors.) Then we write the m file containing the 

derivative formulae. Let's call it ydot.m. (You could call it anything you like, as long as everything is 

consistent). ydot.m would look like the following: 

function dydt=ydot(t,y); %Note that dydt is a dummy variable to pass back the derivatives values 

x=y(1); %It is convenient to copy the components of the vector to scalars with 

v=y(2); %meaningful names to make it easier for typing in the formula and 

%for debugging 

m=1; 

b=2; 

k=3; 

%The equation for the derivatives 

dxdt=v; 

dvdt=-(b*v+k*x)/m; %In this example, t is not used 

dydt=[dxdt; dvdt]; %Putting back the derivatives into the vector array of derivatives 

Then in the MATLAB main window, use the command: 

[t,y] = ode45(@ydot, [0 5], [4 0]’); %[0 5] is [t0 tfinal]; [4 0]’ is [x(0) v(0)]’ 

will give you at the time points in the array t, the values of x and v in the first and second column of y. 

Note that a ; is used at the end of the command to prevent displaying all the values of the variables in the course 

of integration. 

You could plot the results of each by plot(t,y(:,1)) for x and plot(t,y(:,2)) for v. (plot(t,y) would plot them both 

in the same graph, but it is better to plot them individually using the subplot command because in general, they 

may have very different scales. To get drastically different values on the same graph, rescale them to new 

variables first) 

Very often, you have to pass values to and from the ode routine. This process can be facilitated by using an 

anonymous function to access your derivative formulae. For instance, if you want to pass the value in the 

variable "mass" to your function ydot, you could do the following: 

mass = 12;

[t,y] = ode45(@(t,y) ydot(t,y,mass), [0 5], [4 0]');


... 

function dydt=ydot(t,y,m) % ydot has been defined with an extra input parameter m 

x=y(1); %It is convenient to copy the components of the vector to scalars with 

v=y(2); %meaningful names to make it easier for typing in the formula and 

%for debugging 

b=2; 

k=3; 

%The equation for the derivatives 

dxdt=v; 

dvdt=-(b*v+k*x)/m; %Here, the mass m was passed in as an input parameter 

dydt=[dxdt; dvdt]; %Putting back the derivatives into the vector array of derivatives 

Here, the notation @(t,y) indicates that the expression that follows is to be treated as a function of two variables, 

t and y. When MATLAB then looks at the expression ydot(t,y,mass), it substitutes in the value for "mass", and 

passes the two-variable function ydot(t,y,12) to the ode routine. Consult the help entries on function handles 

and anonymous functions for more details. 

Notes on ode45 

The basis for the „matching‟ kind of ordinary differential equation solvers such as the ode45 is as follows.  

Using the above example, when the initial conditions of the above system are known, the state of the system at 
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every next time step, x(t+t) and v(t+t), can be predicted from its current state, x(t), v(t) and their derivatives. 

In this case: 

dx/dt = v(t)

dv/dt = a(t), where

a(t)= -(b(t)*v(t)+k*x(t))/m,


The time-marching solution process can be illustrated by a first-order-accuracy numerical scheme, 

x(t+t)=x(t)+v(t)*t, and

v(t+t)=v(t)+a(t)*t.


In ode45, the above time-marching solution is obtained with a higher order of accuracy. It is based on 

the fourth- and fifth-order Runge-Kutta method. See a numerical analysis text book for detailed description of 

the algorithm. 
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