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Nanomaterials

« Growing, Touching and Observing

« For lab #7
— CNT growth

— Surface drop test



How small is small?

This image has been removed due to copyright restrictions.

AtOmIC radIUS Of SI|ICOn - 0.1 nm Please see http://images.books24x7.com/bookimages/

id_19474/fig62_01.jpg.

Size of one unit cell of silicon =0.542 nm

Atomic radius of carbon = 0.07 nm
Size of one unit cell of diamond =0.357 nm

Thickness of hair/paper = 100 um = 10° nm

— around million atoms

Size of transistors in your computer 2 14 nm
—1n 14x14 nm? channel: 4900 atoms
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Emerging nanomaterials
(Low-dimensional materials)

Graphene p&
* 2D: Single-atom thickness films

— Flexible electronics
— Sensors

e 1D: Nanowires

— Quantum electronics
— Biosensors
— Solar cell, photodetector

e OD: Quantum dots

' — Single electron transistor

Intech "Lithography", Michael Wang

Peter Allen, UCSB ISBN 978-953-307-064-3, p264
Appl. Phys. Lett. 100, 143108 (2012);

© Nature, AIP Publishing LLC, and InTech. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Why small??
Quantum confinement, high surface area, Flexibility '
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Carbon-based nanomaterials

Graphite (3D)
van der Waals stack of graphene
Conductor

Diamond (3D)

sp3 bonding of carbons
Wide band gap (5.5 eV)

Basic building block

Graphene (2D)
Single-atom-thick carbon layer
sp2 bonding of carbons
Semi-metal

A

Fullerene (0D)
Wide band gap (5.5 eV)

Carbon nanotube (1D)

Rolled graphene
emiconductor (2/3) or metal (1/3

Single element carbon shows

different functionality
depending on its dimension

© sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.
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History of nanomaterials

1959: Richard Feynman’ s famed talk.” There's Plenty of

Room at the Bottom *

1981: Binnig and Rohrer created the STM to image
individual atoms. (Nobel, Physics 1986)

1985: Curl, Kroto, Smalley discovered fullerene (Nobel,
Physics 1996)

1991 Iijima discovered single wall carbon nanotubes.

2010 A. Geim and K. Novoselov (Nobel physics on
Graphene)



Graphene overall orbital structure
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Properties of graphene

S e s

Electrical
conductivity

Thermal
conductivity

Young’s modulus

Transparency

Flexibility

~100,000 cm?2/VS 450cm2/Vs

~5000W/K.m 1.3 W/K.m

1 TPa 130~170 GPa
O X

O X



The way of rolling up graphene to form CNT

This image has been removed due to copyright restrictions.
Please see http://www.nanotech-now.com/images/SWNT-rollup.jpg.

© AIP Publishing LLC. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use.

Diameter determines band gap
Chirality determines semiconductor or metal
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© sources unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
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Possible Chiral Vectors

Ch =na; + ma»

|Ch| = \/gacc P +nm+m’

V3a

T

<« \/n2 +nm+m’

2 dtube:

[J=tan" [\/gm /(2n + m)]

(n-m) = 3g metallic
(n-m) = 3g £1 semiconducting

© AIP Publishing LLC. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

11
M. S. Dresselhaus, Electronic Structure of Chiral Graphene Tubules, Appl. Phys. Lett. 60 (18), 1992
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Properties of Carbon Nanotubes

I N S T,

Electrical ~100,000 cm%/VS  >100,000 cm2/VS

conductivity cm2/Vs
Thermal ~5000W/K.m ~5000W/K.m 1.3 W/K.m
conductivity
Young’s modulus 0.9~1.1TPa 1 TPa 130~170

GPa

Transparency O @ X
Flexibility 0] O X
Band gap Semiconductor Semi-metal Semicondu

& Metal ctor



Application of CNT: Electronics (CNT forest)

© Science. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Volder et al. Science, 339, 535 (2013) 13
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Application of CNT: Energy storage (CNT forest)

@ Supercapacitor

CNT electrode

Electrolyte
and ions

' :
-

© Science. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Volder et al. Science, 339, 535 (2013) 14



https://ocw.mit.edu/help/faq-fair-use

Application of CNT: Solar cell electrode (CNT network)

100

60-

40-

— SWCNT
s 7n0:Al

20-

Transmittance (%)

0

o e ——

400 500 600

J. Kim et al. Advanced Materials, Vol. 24, 1899 (2012)

© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.
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Application of CNTs: Atomic Force Microscope tips

Reduced diameter — maximum atomic imaging resolution (Lab 10)

© Nature. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Nature Nanotechnology, 4, 483 (2009)

16
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Application of CNT: Superhydrophobic surface (CNT forest)

PTFE:coated
_carbon nanatube forest

© ACS Publications. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use.

Nano Letters, 2003, 3 (12), pp 1701-1705

17
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Application of CNTs: Electronics (Single CNT)

* Transistor technology

Past: Silicon Past: Strained Silicon Current: FIN Silicon Future???

O o o Ge pee
I1I-V nFETs
Z
2001 2003 2005 2007 2009 2011 2016 Nanowire FETs

Introduction of strained silicon technology

Single CNT transistor

Electron mobility of CNT is 2 orders of e —
magnitude higher than that of silicon V- V. (V)

Nano Lett., Vol. 4, No. 1, 2004

© ACS Publications. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.
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Chemical vapour deposition (CVD)

Fe (1 nm) Al,05(10 nm)

Ca

?

T

This image has been removed due to copyright restrictions.
Please see the image on Page 7 in http://nt13.aalto.fi/docs/NT13_TutorialB.pdf.

This image has been removed due to copyright restrictions.
Please see the images on Page 25 in http://ntl13.aalto.fi/docs/NT13_TutorialB.pdf.

http://ntl13.aalto.fi/docs/NT13_TutorialB.pdf, Christophe Bichara

CNT Forest formed by metal nanosphere catalyst

Longest CNTs grown?

Class award

© AIP Publishing LLC. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

H.W. Lee, S. Kim, and S.G. Kim, App. Phys., 2009 19
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(H.W. Lee, S. Kim, and S.G. Kim, MIT)
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Understanding CNT growth
: Formation of metal nanoparticles

ymetal/va por

VAI203/va por

© ACS Publications. All rights reserved. This content is
Excluded from our Creative Commons license. For more

)/meta|/A|203+C059 ymetal/vapor > VAI203/vapor information, see https://ocw.mit.edu/help/fag-fair-use.

J. Kim et al, ACS Nano, 2010

Metal cannot completely wet Al,O,
- Discontinuous metal islands are automatically formed
at ultrathin thickness

21
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Understanding CNT growth
: Catalytic reaction with metal particles

Catalytic metals: Fe, Ni, Co

This image has been removed due to copyright restrictions.
Please see the image on Page 48 in http://nt13.aalto.fi/docs/NT13_TutorialB.pdf.

This image has been removed due to copyright restrictions.
Please see http://www.nanobliss.com/departments/techniq
ues/techniqueimages/basegrowth_nanobliss_350wide.jpg.

http://nt13.aalto.fi/docs/NT13_TutorialB.pdf
Christophe Bichara

22
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(@)

Tip-growth mode
(weak interaction
at substrate/metal)

(b)

Base-growth mode
(strong interaction
at substrate/metal)

Growth modes
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© InTech. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

* SWNT, single-walled nanotube (0.3 <d <3 nm)
e MWNT, multi-walled nanotube (d > 10 nm)

Carbon Nanotube Synthesis and Growth Mechanism
By Mukul Kumar (intechopen.com)

23
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Understanding CNT growth
: Role of catalytic metals & Al,O,

Role of catalytic metals

http://nt13.aalto.fi/docs/NT13_TutorialB.pdf,

This image has been removed due to copyright restrictions.
Please see the image on Page 15 in http://nt13.aalto.fi/docs/NT13 TutorialB.pdf.

CNT growth sequence
C dissolution into the catalyst
- C supersaturation
- C precipitation on catalytic nanoparticles
- CNT growth from the periphery of nanoparticles

Role of Al,O,

C,H, C,H,

VN\m ¥\

Sio, A0,

Al203 enhances CNT growth

© American Scientific Publishers. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Journal of Nanoscience and Nanotechnology, 8, (2008) 6123 24
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In-situ observation of CNT growth

* |In-situ TEM

This image has been removed due to copyright restrictions.
Please watch the video at https://www.youtube.com/watch?
v=TaNCWcumeyg.

https://www.youtube.com/watch?v=TaNCWcumeyg

Pigos et al. ACS Nano, 5,12, 10096-10101 (2011)

© ACS Publications. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.
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Challenges for Carbon Nanotube Applications

Process control to produce nanotubes with same diameter and
chirality.
= Purification/sorting methods required for uniform CNT
= Placement/alignment methods required for long-range
order

Develop large-scale, high productivity synthesis methods.
Develop large-scale, long range order assembly processes

deterministically.

ASSEMBLY, ASSEMBLY, ASSEMBLY!!!
Graphene = Lab 11

26



Placement: Key issue to realized benefit of CNT
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T By David Frank, IBM, 2013 CNT-FETs (high speed with low power)

Ve (V)

Sub-10 nm CNTFET, IBM, 2012
(Franklin et. al., Nano Lett. 12, 758)

© IBM and ACS Publications. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Requirement:
= High density of individual CNTs (transistor density x CNTs/transistor ~ 1019/cm?)
= Alignment with a constant pitch (< 10 nm)

=  Compatibility with wafer-scale CMOS process
=  Compatibility with a process for high purity of semiconducting CNTs

27
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Aligned growth of CNTs

Lateral growth of CNT at the step edges of sapphire wafers
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© American Chemical Society. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.
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Conventional placement options

b I (

2 A : Dielectrophoresis | Dip-pen Nanolithography 107 sites/cm?

Writing direction

—

Molecular transport

Water meniscus

1um
—

PNAS 103, 2026 (2006)

Nature 425, 36 (2003)

Nano Lett. 7, 1556 (2007)

© Nature and PNAS. All rights reserved. This content is

© ACS Publications. All rights reserved. This content is excluded from our Creative Commons license. For more
excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.
information, see https://ocw.mit.edu/help/faqg-fair-use.
Challenges:
Challenges: = Throughput of scanning probe techniques
= Biasing to billions of transistors = Demonstrated on Au substrates

= Scaling: limitation of minimum pad size

= Density: interference between electrodes 29
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Specific Surface Functionalization
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© Macmillan Publishers Limited. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Strong electrostatic interaction between CNTs and surface monolayer
= Surface monolayer (NMPI): self-assembled on HfO, - Positively charged

= CNTs: dispersed in a normal surfactant solution (1% SDS) - Negatively charged
H. Park et al., Nature Nanotechnology 7, 787(2012)

NMPI: 4-(N-hydroxycarboxamido)-1-methylpyridinium iodide

30
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Position control: excellent selectivity and high density

1 um (5 trenches)
s

Pitch = 200 Inm
W, = 100 nm

v £ 5
L4 £

if

L :(;]?O*tsr? ﬁghes)%; TR
eﬁ‘i, 3 A ;:

CNTs on HfO,
Nearly perfect selectivity

Pitch = 100 nm
W,/ =70/nm

© Macmillan Publishers Limited. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

lon-exchange chemistry enables high density and potential for scaling

= Coulombic bonding = high density in small dimensions
H. Park et al., Nature Nanotechnology 7, 787(2012) Record denSIty: 109/cm2 31
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Che New llork Times

[.B.M. Reports Nanotube Chip Breakthrough

By JOHN MARKOFF OCTOBER 28, 2012 2:00 PM  ® 46 Comments

Email

n Share

W Tweet

Save

~» More

SAN FRANCISCO — L.B.M. scientists
are reporting progress in a chip-
making technology that is likely to
ensure that the basic digital switch at
the heart of modern microchips will

continue to shrink for more than a

decade. The face of an [.B.M. research
scientist, Hongsik Park, is reflected

. . . in a wafer used to make
The advance, first described in the microprocessors. | B.M. Research

journal Nature Nanotechnology on

Sunday, is based on carbon nanotubes — exotic molecules that have
long held out promise as an alternative to silicon from which to
create the tiny logic gates now used by the billions to create
microprocessors and memory chips.

The I.B.M. scientists at the T.J. Watson Research Center in
Yorktown Heights, N.Y., have been able to pattern an array of
carbon nanotubes on the surface of a silicon wafer and use them to
build hybrid chips with more than 10,000 working transistors.

© New York Times. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.
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CNT vs Graphene

T G T apene s

Electrical ~100,000 cm2/VS  ~100,000 450 cm2/Vs
conductivity cm?2/VS

Thermal ~5000W/K.m ~5000W/K.m 1.3 W/K.m
conductivity

Young’s modulus 0.9~1.1TPa 1 TPa 130~170 GPa
Transparency O @ X

Flexibility 0] O X

Band gap Semiconductor Semi-metal Semiconductor



Why graphene?

Flat/Monolayer/Single-crystalline
Uniform in a LARGE SCALE

First single-crystalline wafer-scale graphene

Si0,/Si water

© Science. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faqg-fair-use.

Jeehwan Kim et al. Science, 342, 833 (2013)34
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Application of CNT: Superhydrophobic surface (CNT forest)

PTFE:coated
_carbon nanatube forest

Nano Letters, 2003, 3 (12), pp 1701-1705

© ACS Publications. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.
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Super hydrophobicity (Lab 7)

Hydrophobic, 6>909°

Super hydrophobic, 6>1500

- Chemical maodification, coating
- Nanostructured surface

Hydropilic, 6<900

0=174°
T. Onda et. al.

Langmuir 12(9) 2125-

~amm saAA~

COSQfl
SR :
L VW
0 -
cos 6
_____ T P

© sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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Super hydrophobicity (Lab 7)

apor / Lig
*
6 |
e
dx

Solid

© sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Wenzel’ s model

« If the surface has a high free energy, Cassie’ s model

roughness promotes wetting. *  Wettability of heterogeneous
. (solid+air) surfaces
o If it has low free energy, roughness _ o 0
promotes hydrophobicity. » Contact angle on air fraction is 180°.
cos¢ =rcosd cosd" =1+ ¢ (cosd+1)
;- actual_area ¢, =solid _ fraction _surface

~ projected _area
@ = apparent _contact _angle

37
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Super hydrophobicity (Lab 7)

Bouncing a water drop

Deposition
oA
e = - —)
Splash

rebounding

© sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.
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Super hydrophobicity (Lab 7)

- When kinetic energy is very high

Restitution ratio=|v’ /v|
= Relative speed after collision/
Relative speed before collision/
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We = pV ?R/y= kinetic energy/surface energy
—> Bouncing patterns determined by Weber number

Low We: No deformation/Mid We: Deformation/High We: Break off
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Lotus Effect

* Some plant leaves have near 170° contact angle,
and show no accumulation of dirt. (Lotus Effect)

e Superhydrophobicity by nano patterned surface
Self-cleaning surface (no car wash?)

W. Barthlott and C.
Neinhuis, Planta 202, 1
(1997)

{a) Smooth hydrophobic surface {b) Superhydrophobic-surface
Nanotech Lecture: ‘Self-Cleaning
Surfaces’ by Dr. Vesselin Paunov
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Super hydrophobicity (Lab 7)

Bouncing a milk drop
H. Doc Edgerton, MIT
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